private double getPMulticluster(List<List<Integer>> clusters, int numRestarts) { if (false) { Graph g = new EdgeListGraph(); List<Node> latents = new ArrayList<Node>(); for (int i = 0; i < clusters.size(); i++) { GraphNode latent = new GraphNode("L" + i); latent.setNodeType(NodeType.LATENT); latents.add(latent); g.addNode(latent); List<Node> cluster = variablesForIndices(clusters.get(i)); for (int j = 0; j < cluster.size(); j++) { g.addNode(cluster.get(j)); g.addDirectedEdge(latent, cluster.get(j)); } } SemPm pm = new SemPm(g); // pm.fixOneLoadingPerLatent(); SemOptimizerPowell semOptimizer = new SemOptimizerPowell(); semOptimizer.setNumRestarts(numRestarts); SemEstimator est = new SemEstimator(cov, pm, semOptimizer); est.setScoreType(SemIm.ScoreType.Fgls); est.estimate(); return est.getEstimatedSem().getPValue(); } else { double max = Double.NEGATIVE_INFINITY; for (int i = 0; i < numRestarts; i++) { Mimbuild2 mimbuild = new Mimbuild2(); List<List<Node>> _clusters = new ArrayList<List<Node>>(); for (List<Integer> _cluster : clusters) { _clusters.add(variablesForIndices(_cluster)); } List<String> names = new ArrayList<String>(); for (int j = 0; j < clusters.size(); j++) { names.add("L" + j); } mimbuild.search(_clusters, names, cov); double c = mimbuild.getpValue(); if (c > max) max = c; } return max; } }
private double getP(List<Integer> cluster, int numRestarts) { if (true) { Node latent = new GraphNode("L"); latent.setNodeType(NodeType.LATENT); Graph g = new EdgeListGraph(); g.addNode(latent); List<Node> measures = variablesForIndices(cluster); for (Node node : measures) { g.addNode(node); g.addDirectedEdge(latent, node); } SemPm pm = new SemPm(g); // pm.fixOneLoadingPerLatent(); SemOptimizerPowell semOptimizer = new SemOptimizerPowell(); semOptimizer.setNumRestarts(numRestarts); SemEstimator est = new SemEstimator(cov, pm, semOptimizer); est.setScoreType(SemIm.ScoreType.Fgls); est.estimate(); return est.getEstimatedSem().getPValue(); } else { double max = Double.NEGATIVE_INFINITY; for (int i = 0; i < numRestarts; i++) { Mimbuild2 mimbuild = new Mimbuild2(); List<List<Node>> clusters1 = new ArrayList<List<Node>>(); clusters1.add(variablesForIndices(new ArrayList<Integer>(cluster))); List<String> names = new ArrayList<String>(); names.add("L"); mimbuild.search(clusters1, names, cov); double c = mimbuild.getpValue(); if (c > max) max = c; } return max; } }
private Graph convertSearchGraphNodes(Set<Set<Node>> clusters) { Graph graph = new EdgeListGraph(variables); List<Node> latents = new ArrayList<Node>(); for (int i = 0; i < clusters.size(); i++) { Node latent = new GraphNode(MimBuild.LATENT_PREFIX + (i + 1)); latent.setNodeType(NodeType.LATENT); latents.add(latent); graph.addNode(latent); } List<Set<Node>> _clusters = new ArrayList<Set<Node>>(clusters); for (int i = 0; i < latents.size(); i++) { for (Node node : _clusters.get(i)) { if (!graph.containsNode(node)) graph.addNode(node); graph.addDirectedEdge(latents.get(i), node); } } return graph; }
private double getClusterP2(List<Node> c) { Graph g = new EdgeListGraph(c); Node l = new GraphNode("L"); l.setNodeType(NodeType.LATENT); g.addNode(l); for (Node n : c) { g.addDirectedEdge(l, n); } SemPm pm = new SemPm(g); SemEstimator est; if (dataModel instanceof DataSet) { est = new SemEstimator((DataSet) dataModel, pm, new SemOptimizerEm()); } else { est = new SemEstimator((CovarianceMatrix) dataModel, pm, new SemOptimizerEm()); } SemIm estIm = est.estimate(); double pValue = estIm.getPValue(); return pValue == 1 ? Double.NaN : pValue; }
@Test public void test15() { RandomUtil.getInstance().setSeed(29999483L); try { Node x1 = new GraphNode("X1"); Node x2 = new GraphNode("X2"); Node x3 = new GraphNode("X3"); Node x4 = new GraphNode("X4"); Graph g = new EdgeListGraphSingleConnections(); g.addNode(x1); g.addNode(x2); g.addNode(x3); g.addNode(x4); g.addDirectedEdge(x1, x2); g.addDirectedEdge(x2, x3); g.addDirectedEdge(x3, x4); g.addDirectedEdge(x1, x4); GeneralizedSemPm pm = new GeneralizedSemPm(g); pm.setNodeExpression(x1, "E_X1"); pm.setNodeExpression(x2, "a1 * X1 + E_X2"); pm.setNodeExpression(x3, "a2 * X2 + E_X3"); pm.setNodeExpression(x4, "a3 * X1 + a4 * X3 ^ 2 + E_X4"); pm.setNodeExpression(pm.getErrorNode(x1), "Gamma(c1, c2)"); pm.setNodeExpression(pm.getErrorNode(x2), "ChiSquare(c3)"); pm.setNodeExpression(pm.getErrorNode(x3), "ChiSquare(c4)"); pm.setNodeExpression(pm.getErrorNode(x4), "ChiSquare(c5)"); pm.setParameterExpression("c1", "5"); pm.setParameterExpression("c2", "2"); pm.setParameterExpression("c3", "10"); pm.setParameterExpression("c4", "10"); pm.setParameterExpression("c5", "10"); pm.setParameterEstimationInitializationExpression("c1", "U(1, 5)"); pm.setParameterEstimationInitializationExpression("c2", "U(1, 5)"); pm.setParameterEstimationInitializationExpression("c3", "U(1, 5)"); pm.setParameterEstimationInitializationExpression("c4", "U(1, 5)"); pm.setParameterEstimationInitializationExpression("c5", "U(1, 5)"); GeneralizedSemIm im = new GeneralizedSemIm(pm); print("True model: "); print(im); DataSet data = im.simulateDataRecursive(1000, false); GeneralizedSemEstimator estimator = new GeneralizedSemEstimator(); GeneralizedSemIm estIm = estimator.estimate(pm, data); print("\n\n\nEstimated model: "); print(estIm); print(estimator.getReport()); double aSquaredStar = estimator.getaSquaredStar(); assertEquals(.79, aSquaredStar, 0.01); } catch (ParseException e) { e.printStackTrace(); } }
@Test public void test14() { RandomUtil.getInstance().setSeed(29999483L); try { Node x1 = new GraphNode("X1"); Node x2 = new GraphNode("X2"); Node x3 = new GraphNode("X3"); Node x4 = new GraphNode("X4"); Graph g = new EdgeListGraphSingleConnections(); g.addNode(x1); g.addNode(x2); g.addNode(x3); g.addNode(x4); g.addDirectedEdge(x1, x2); g.addDirectedEdge(x2, x3); g.addDirectedEdge(x3, x4); g.addDirectedEdge(x1, x4); GeneralizedSemPm pm = new GeneralizedSemPm(g); pm.setNodeExpression(x1, "E_X1"); pm.setNodeExpression(x2, "a1 * tan(X1) + E_X2"); pm.setNodeExpression(x3, "a2 * tan(X2) + E_X3"); pm.setNodeExpression(x4, "a3 * tan(X1) + a4 * tan(X3) ^ 2 + E_X4"); pm.setNodeExpression(pm.getErrorNode(x1), "N(0, c1)"); pm.setNodeExpression(pm.getErrorNode(x2), "N(0, c2)"); pm.setNodeExpression(pm.getErrorNode(x3), "N(0, c3)"); pm.setNodeExpression(pm.getErrorNode(x4), "N(0, c4)"); pm.setParameterExpression("a1", "1"); pm.setParameterExpression("a2", "1"); pm.setParameterExpression("a3", "1"); pm.setParameterExpression("a4", "1"); pm.setParameterExpression("c1", "4"); pm.setParameterExpression("c2", "4"); pm.setParameterExpression("c3", "4"); pm.setParameterExpression("c4", "4"); GeneralizedSemIm im = new GeneralizedSemIm(pm); print("True model: "); print(im); DataSet data = im.simulateDataRecursive(1000, false); GeneralizedSemIm imInit = new GeneralizedSemIm(pm); imInit.setParameterValue("c1", 8); imInit.setParameterValue("c2", 8); imInit.setParameterValue("c3", 8); imInit.setParameterValue("c4", 8); GeneralizedSemEstimator estimator = new GeneralizedSemEstimator(); GeneralizedSemIm estIm = estimator.estimate(pm, data); print("\n\n\nEstimated model: "); print(estIm); print(estimator.getReport()); double aSquaredStar = estimator.getaSquaredStar(); assertEquals(71.25, aSquaredStar, 0.01); } catch (ParseException e) { e.printStackTrace(); } }