public static Graph weightedRandomGraph(int n, int e) { List<Node> nodes = new ArrayList<Node>(); for (int i = 0; i < n; i++) nodes.add(new GraphNode("X" + i)); Graph graph = new EdgeListGraph(nodes); for (int e0 = 0; e0 < e; e0++) { int i1 = weightedRandom(nodes, graph); // int i2 = RandomUtil.getInstance().nextInt(n); int i2 = weightedRandom(nodes, graph); if (!(shortestPath(nodes.get(i1), nodes.get(i2), graph) < 9)) { e0--; continue; } if (i1 == i2) { e0--; continue; } Edge edge = Edges.undirectedEdge(nodes.get(i1), nodes.get(i2)); if (graph.containsEdge(edge)) { e0--; continue; } graph.addEdge(edge); } for (Edge edge : graph.getEdges()) { Node n1 = edge.getNode1(); Node n2 = edge.getNode2(); if (!graph.isAncestorOf(n2, n1)) { graph.removeEdge(edge); graph.addDirectedEdge(n1, n2); } else { graph.removeEdge(edge); graph.addDirectedEdge(n2, n1); } } return graph; }
/** * Transforms a maximally directed pattern (PDAG) represented in graph <code>g</code> into an * arbitrary DAG by modifying <code>g</code> itself. Based on the algorithm described in * Chickering (2002) "Optimal structure identification with greedy search" Journal of Machine * Learning Research. R. Silva, June 2004 */ public static void pdagToDag(Graph g) { Graph p = new EdgeListGraph(g); List<Edge> undirectedEdges = new ArrayList<Edge>(); for (Edge edge : g.getEdges()) { if (edge.getEndpoint1() == Endpoint.TAIL && edge.getEndpoint2() == Endpoint.TAIL && !undirectedEdges.contains(edge)) { undirectedEdges.add(edge); } } g.removeEdges(undirectedEdges); List<Node> pNodes = p.getNodes(); do { Node x = null; for (Node pNode : pNodes) { x = pNode; if (p.getChildren(x).size() > 0) { continue; } Set<Node> neighbors = new HashSet<Node>(); for (Edge edge : p.getEdges()) { if (edge.getNode1() == x || edge.getNode2() == x) { if (edge.getEndpoint1() == Endpoint.TAIL && edge.getEndpoint2() == Endpoint.TAIL) { if (edge.getNode1() == x) { neighbors.add(edge.getNode2()); } else { neighbors.add(edge.getNode1()); } } } } if (neighbors.size() > 0) { Collection<Node> parents = p.getParents(x); Set<Node> all = new HashSet<Node>(neighbors); all.addAll(parents); if (!GraphUtils.isClique(all, p)) { continue; } } for (Node neighbor : neighbors) { Node node1 = g.getNode(neighbor.getName()); Node node2 = g.getNode(x.getName()); g.addDirectedEdge(node1, node2); } p.removeNode(x); break; } pNodes.remove(x); } while (pNodes.size() > 0); }
private double getPMulticluster(List<List<Integer>> clusters, int numRestarts) { if (false) { Graph g = new EdgeListGraph(); List<Node> latents = new ArrayList<Node>(); for (int i = 0; i < clusters.size(); i++) { GraphNode latent = new GraphNode("L" + i); latent.setNodeType(NodeType.LATENT); latents.add(latent); g.addNode(latent); List<Node> cluster = variablesForIndices(clusters.get(i)); for (int j = 0; j < cluster.size(); j++) { g.addNode(cluster.get(j)); g.addDirectedEdge(latent, cluster.get(j)); } } SemPm pm = new SemPm(g); // pm.fixOneLoadingPerLatent(); SemOptimizerPowell semOptimizer = new SemOptimizerPowell(); semOptimizer.setNumRestarts(numRestarts); SemEstimator est = new SemEstimator(cov, pm, semOptimizer); est.setScoreType(SemIm.ScoreType.Fgls); est.estimate(); return est.getEstimatedSem().getPValue(); } else { double max = Double.NEGATIVE_INFINITY; for (int i = 0; i < numRestarts; i++) { Mimbuild2 mimbuild = new Mimbuild2(); List<List<Node>> _clusters = new ArrayList<List<Node>>(); for (List<Integer> _cluster : clusters) { _clusters.add(variablesForIndices(_cluster)); } List<String> names = new ArrayList<String>(); for (int j = 0; j < clusters.size(); j++) { names.add("L" + j); } mimbuild.search(_clusters, names, cov); double c = mimbuild.getpValue(); if (c > max) max = c; } return max; } }
public static Graph bestGuessCycleOrientation(Graph graph, IndependenceTest test) { while (true) { List<Node> cycle = GraphUtils.directedCycle(graph); if (cycle == null) { break; } LinkedList<Node> _cycle = new LinkedList<Node>(cycle); Node first = _cycle.getFirst(); Node last = _cycle.getLast(); _cycle.addFirst(last); _cycle.addLast(first); int _j = -1; double minP = Double.POSITIVE_INFINITY; for (int j = 1; j < _cycle.size() - 1; j++) { int i = j - 1; int k = j + 1; Node x = test.getVariable(_cycle.get(i).getName()); Node y = test.getVariable(_cycle.get(j).getName()); Node z = test.getVariable(_cycle.get(k).getName()); test.isIndependent(x, z, Collections.singletonList(y)); System.out.println("Testing " + x + " _||_ " + z + " | " + y); double p = test.getPValue(); System.out.println("p = " + p); if (p < minP) { _j = j; minP = p; } } Node x = _cycle.get(_j - 1); Node y = _cycle.get(_j); Node z = _cycle.get(_j + 1); graph.removeEdge(x, y); graph.removeEdge(z, y); graph.addDirectedEdge(x, y); graph.addDirectedEdge(z, y); } return graph; }
/** Orients according to background knowledge. */ public static void pcOrientbk(Knowledge bk, Graph graph, List<Node> nodes) { TetradLogger.getInstance().log("info", "Staring BK Orientation."); for (Iterator<KnowledgeEdge> it = bk.forbiddenEdgesIterator(); it.hasNext(); ) { KnowledgeEdge edge = it.next(); // match strings to variables in the graph. Node from = translate(edge.getFrom(), nodes); Node to = translate(edge.getTo(), nodes); if (from == null || to == null) { continue; } if (graph.getEdge(from, to) == null) { continue; } // Orient to-->from graph.removeEdge(from, to); graph.addDirectedEdge(from, to); graph.setEndpoint(from, to, Endpoint.TAIL); graph.setEndpoint(to, from, Endpoint.ARROW); TetradLogger.getInstance() .edgeOriented(SearchLogUtils.edgeOrientedMsg("Knowledge", graph.getEdge(to, from))); } for (Iterator<KnowledgeEdge> it = bk.requiredEdgesIterator(); it.hasNext(); ) { KnowledgeEdge edge = it.next(); // match strings to variables in this graph Node from = translate(edge.getFrom(), nodes); Node to = translate(edge.getTo(), nodes); if (from == null || to == null) { continue; } if (graph.getEdge(from, to) == null) { continue; } // Orient from-->to graph.setEndpoint(to, from, Endpoint.TAIL); graph.setEndpoint(from, to, Endpoint.ARROW); TetradLogger.getInstance() .edgeOriented(SearchLogUtils.edgeOrientedMsg("Knowledge", graph.getEdge(from, to))); } TetradLogger.getInstance().log("info", "Finishing BK Orientation."); }
@Test public void test8() { RandomUtil.getInstance().setSeed(29999483L); Node x = new GraphNode("X"); Node y = new GraphNode("Y"); List<Node> nodes = new ArrayList<>(); nodes.add(x); nodes.add(y); Graph graph = new EdgeListGraphSingleConnections(nodes); graph.addDirectedEdge(x, y); SemPm spm = new SemPm(graph); SemIm sim = new SemIm(spm); sim.setEdgeCoef(x, y, 20); sim.setErrVar(x, 1); sim.setErrVar(y, 1); GeneralizedSemPm pm = new GeneralizedSemPm(spm); GeneralizedSemIm im = new GeneralizedSemIm(pm, sim); print(im); try { pm.setParameterEstimationInitializationExpression("b1", "U(10, 30)"); pm.setParameterEstimationInitializationExpression("T1", "U(.1, 3)"); pm.setParameterEstimationInitializationExpression("T2", "U(.1, 3)"); } catch (ParseException e) { e.printStackTrace(); } DataSet data = im.simulateDataRecursive(1000, false); GeneralizedSemEstimator estimator = new GeneralizedSemEstimator(); GeneralizedSemIm estIm = estimator.estimate(pm, data); print(estIm); // System.out.println(estimator.getReport()); double aSquaredStar = estimator.getaSquaredStar(); assertEquals(0.69, aSquaredStar, 0.01); }
private double getP(List<Integer> cluster, int numRestarts) { if (true) { Node latent = new GraphNode("L"); latent.setNodeType(NodeType.LATENT); Graph g = new EdgeListGraph(); g.addNode(latent); List<Node> measures = variablesForIndices(cluster); for (Node node : measures) { g.addNode(node); g.addDirectedEdge(latent, node); } SemPm pm = new SemPm(g); // pm.fixOneLoadingPerLatent(); SemOptimizerPowell semOptimizer = new SemOptimizerPowell(); semOptimizer.setNumRestarts(numRestarts); SemEstimator est = new SemEstimator(cov, pm, semOptimizer); est.setScoreType(SemIm.ScoreType.Fgls); est.estimate(); return est.getEstimatedSem().getPValue(); } else { double max = Double.NEGATIVE_INFINITY; for (int i = 0; i < numRestarts; i++) { Mimbuild2 mimbuild = new Mimbuild2(); List<List<Node>> clusters1 = new ArrayList<List<Node>>(); clusters1.add(variablesForIndices(new ArrayList<Integer>(cluster))); List<String> names = new ArrayList<String>(); names.add("L"); mimbuild.search(clusters1, names, cov); double c = mimbuild.getpValue(); if (c > max) max = c; } return max; } }
private double getClusterP2(List<Node> c) { Graph g = new EdgeListGraph(c); Node l = new GraphNode("L"); l.setNodeType(NodeType.LATENT); g.addNode(l); for (Node n : c) { g.addDirectedEdge(l, n); } SemPm pm = new SemPm(g); SemEstimator est; if (dataModel instanceof DataSet) { est = new SemEstimator((DataSet) dataModel, pm, new SemOptimizerEm()); } else { est = new SemEstimator((CovarianceMatrix) dataModel, pm, new SemOptimizerEm()); } SemIm estIm = est.estimate(); double pValue = estIm.getPValue(); return pValue == 1 ? Double.NaN : pValue; }
private Graph convertSearchGraphNodes(Set<Set<Node>> clusters) { Graph graph = new EdgeListGraph(variables); List<Node> latents = new ArrayList<Node>(); for (int i = 0; i < clusters.size(); i++) { Node latent = new GraphNode(MimBuild.LATENT_PREFIX + (i + 1)); latent.setNodeType(NodeType.LATENT); latents.add(latent); graph.addNode(latent); } List<Set<Node>> _clusters = new ArrayList<Set<Node>>(clusters); for (int i = 0; i < latents.size(); i++) { for (Node node : _clusters.get(i)) { if (!graph.containsNode(node)) graph.addNode(node); graph.addDirectedEdge(latents.get(i), node); } } return graph; }
public void rtest3() { Node x = new GraphNode("X"); Node y = new GraphNode("Y"); Node z = new GraphNode("Z"); Node w = new GraphNode("W"); List<Node> nodes = new ArrayList<Node>(); nodes.add(x); nodes.add(y); nodes.add(z); nodes.add(w); Graph g = new EdgeListGraph(nodes); g.addDirectedEdge(x, y); g.addDirectedEdge(x, z); g.addDirectedEdge(y, w); g.addDirectedEdge(z, w); Graph maxGraph = null; double maxPValue = -1.0; ICovarianceMatrix maxLatentCov = null; Graph mim = DataGraphUtils.randomMim(g, 8, 0, 0, 0, true); // Graph mim = DataGraphUtils.randomSingleFactorModel(5, 5, 8, 0, 0, 0); Graph mimStructure = structure(mim); SemPm pm = new SemPm(mim); System.out.println("\n\nTrue graph:"); System.out.println(mimStructure); SemImInitializationParams params = new SemImInitializationParams(); params.setCoefRange(0.5, 1.5); SemIm im = new SemIm(pm, params); int N = 1000; DataSet data = im.simulateData(N, false); CovarianceMatrix cov = new CovarianceMatrix(data); for (int i = 0; i < 1; i++) { ICovarianceMatrix _cov = DataUtils.reorderColumns(cov); List<List<Node>> partition; FindOneFactorClusters fofc = new FindOneFactorClusters(_cov, TestType.TETRAD_WISHART, .001); fofc.search(); partition = fofc.getClusters(); System.out.println(partition); List<String> latentVarList = reidentifyVariables(mim, data, partition, 2); Mimbuild2 mimbuild = new Mimbuild2(); mimbuild.setAlpha(0.001); // mimbuild.setMinimumSize(5); // To test knowledge. // Knowledge knowledge = new Knowledge2(); // knowledge.setEdgeForbidden("L.Y", "L.W", true); // knowledge.setEdgeRequired("L.Y", "L.Z", true); // mimbuild.setKnowledge(knowledge); Graph mimbuildStructure = mimbuild.search(partition, latentVarList, _cov); double pValue = mimbuild.getpValue(); System.out.println(mimbuildStructure); System.out.println("P = " + pValue); System.out.println("Latent Cov = " + mimbuild.getLatentsCov()); if (pValue > maxPValue) { maxPValue = pValue; maxGraph = new EdgeListGraph(mimbuildStructure); maxLatentCov = mimbuild.getLatentsCov(); } } System.out.println("\n\nTrue graph:"); System.out.println(mimStructure); System.out.println("\nBest graph:"); System.out.println(maxGraph); System.out.println("P = " + maxPValue); System.out.println("Latent Cov = " + maxLatentCov); System.out.println(); }
private void addRequiredEdges(Graph graph) { if (true) return; if (knowledgeEmpty()) return; for (Iterator<KnowledgeEdge> it = getKnowledge().requiredEdgesIterator(); it.hasNext(); ) { KnowledgeEdge next = it.next(); Node nodeA = graph.getNode(next.getFrom()); Node nodeB = graph.getNode(next.getTo()); if (!graph.isAncestorOf(nodeB, nodeA)) { graph.removeEdges(nodeA, nodeB); graph.addDirectedEdge(nodeA, nodeB); TetradLogger.getInstance() .log("insertedEdges", "Adding edge by knowledge: " + graph.getEdge(nodeA, nodeB)); } } for (Edge edge : graph.getEdges()) { final String A = edge.getNode1().getName(); final String B = edge.getNode2().getName(); if (knowledge.isForbidden(A, B)) { Node nodeA = edge.getNode1(); Node nodeB = edge.getNode2(); if (nodeA != null && nodeB != null && graph.isAdjacentTo(nodeA, nodeB) && !graph.isChildOf(nodeA, nodeB)) { if (!graph.isAncestorOf(nodeA, nodeB)) { graph.removeEdges(nodeA, nodeB); graph.addDirectedEdge(nodeB, nodeA); TetradLogger.getInstance() .log("insertedEdges", "Adding edge by knowledge: " + graph.getEdge(nodeB, nodeA)); } } if (!graph.isChildOf(nodeA, nodeB) && getKnowledge().isForbidden(nodeA.getName(), nodeB.getName())) { if (!graph.isAncestorOf(nodeA, nodeB)) { graph.removeEdges(nodeA, nodeB); graph.addDirectedEdge(nodeB, nodeA); TetradLogger.getInstance() .log("insertedEdges", "Adding edge by knowledge: " + graph.getEdge(nodeB, nodeA)); } } } else if (knowledge.isForbidden(B, A)) { Node nodeA = edge.getNode2(); Node nodeB = edge.getNode1(); if (nodeA != null && nodeB != null && graph.isAdjacentTo(nodeA, nodeB) && !graph.isChildOf(nodeA, nodeB)) { if (!graph.isAncestorOf(nodeA, nodeB)) { graph.removeEdges(nodeA, nodeB); graph.addDirectedEdge(nodeB, nodeA); TetradLogger.getInstance() .log("insertedEdges", "Adding edge by knowledge: " + graph.getEdge(nodeB, nodeA)); } } if (!graph.isChildOf(nodeA, nodeB) && getKnowledge().isForbidden(nodeA.getName(), nodeB.getName())) { if (!graph.isAncestorOf(nodeA, nodeB)) { graph.removeEdges(nodeA, nodeB); graph.addDirectedEdge(nodeB, nodeA); TetradLogger.getInstance() .log("insertedEdges", "Adding edge by knowledge: " + graph.getEdge(nodeB, nodeA)); } } } } }
/** Do an actual deletion (Definition 13 from Chickering, 2002). */ private void delete(Node x, Node y, List<Node> subset, Graph graph, double bump) { Edge trueEdge = null; if (trueGraph != null) { Node _x = trueGraph.getNode(x.getName()); Node _y = trueGraph.getNode(y.getName()); trueEdge = trueGraph.getEdge(_x, _y); } if (log && verbose) { Edge oldEdge = graph.getEdge(x, y); String label = trueGraph != null && trueEdge != null ? "*" : ""; TetradLogger.getInstance() .log( "deletedEdges", (graph.getNumEdges() - 1) + ". DELETE " + oldEdge + " " + subset + " (" + bump + ") " + label); out.println( (graph.getNumEdges() - 1) + ". DELETE " + oldEdge + " " + subset + " (" + bump + ") " + label); } else { int numEdges = graph.getNumEdges() - 1; if (numEdges % 50 == 0) out.println(numEdges); } graph.removeEdge(x, y); for (Node h : subset) { Edge oldEdge = graph.getEdge(y, h); graph.removeEdge(y, h); graph.addDirectedEdge(y, h); if (log) { TetradLogger.getInstance() .log("directedEdges", "--- Directing " + oldEdge + " to " + graph.getEdge(y, h)); } if (verbose) { out.println("--- Directing " + oldEdge + " to " + graph.getEdge(y, h)); } if (Edges.isUndirectedEdge(graph.getEdge(x, h))) { if (!graph.isAdjacentTo(x, h)) throw new IllegalArgumentException("Not adjacent: " + x + ", " + h); oldEdge = graph.getEdge(x, h); graph.removeEdge(x, h); graph.addDirectedEdge(x, h); if (log) { TetradLogger.getInstance() .log("directedEdges", "--- Directing " + oldEdge + " to " + graph.getEdge(x, h)); } if (verbose) { out.println("--- Directing " + oldEdge + " to " + graph.getEdge(x, h)); } } } }
// serial. private void insert(Node x, Node y, List<Node> t, Graph graph, double bump) { if (graph.isAdjacentTo(x, y)) { return; // The initial graph may already have put this edge in the graph. // throw new IllegalArgumentException(x + " and " + y + " are already adjacent in // the graph."); } Edge trueEdge = null; if (trueGraph != null) { Node _x = trueGraph.getNode(x.getName()); Node _y = trueGraph.getNode(y.getName()); trueEdge = trueGraph.getEdge(_x, _y); } graph.addDirectedEdge(x, y); if (log) { String label = trueGraph != null && trueEdge != null ? "*" : ""; TetradLogger.getInstance() .log( "insertedEdges", graph.getNumEdges() + ". INSERT " + graph.getEdge(x, y) + " " + t + " " + bump + " " + label); } else { int numEdges = graph.getNumEdges() - 1; if (verbose) { if (numEdges % 50 == 0) out.println(numEdges); } } if (verbose) { String label = trueGraph != null && trueEdge != null ? "*" : ""; out.println( graph.getNumEdges() + ". INSERT " + graph.getEdge(x, y) + " " + t + " " + bump + " " + label); } else { int numEdges = graph.getNumEdges() - 1; if (verbose) { if (numEdges % 50 == 0) out.println(numEdges); } } for (Node _t : t) { Edge oldEdge = graph.getEdge(_t, y); if (oldEdge == null) throw new IllegalArgumentException("Not adjacent: " + _t + ", " + y); graph.removeEdge(_t, y); graph.addDirectedEdge(_t, y); if (log && verbose) { TetradLogger.getInstance() .log("directedEdges", "--- Directing " + oldEdge + " to " + graph.getEdge(_t, y)); out.println("--- Directing " + oldEdge + " to " + graph.getEdge(_t, y)); } } }
private void resolveOneEdgeMax(Graph graph, Node x, Node y, boolean strong, Graph oldGraph) { if (RandomUtil.getInstance().nextDouble() > 0.5) { Node temp = x; x = y; y = temp; } TetradLogger.getInstance().log("info", "\nEDGE " + x + " --- " + y); SortedMap<Double, String> scoreReports = new TreeMap<Double, String>(); List<Node> neighborsx = graph.getAdjacentNodes(x); neighborsx.remove(y); double max = Double.NEGATIVE_INFINITY; boolean left = false; boolean right = false; DepthChoiceGenerator genx = new DepthChoiceGenerator(neighborsx.size(), neighborsx.size()); int[] choicex; while ((choicex = genx.next()) != null) { List<Node> condxMinus = GraphUtils.asList(choicex, neighborsx); List<Node> condxPlus = new ArrayList<Node>(condxMinus); condxPlus.add(y); double xPlus = score(x, condxPlus); double xMinus = score(x, condxMinus); List<Node> neighborsy = graph.getAdjacentNodes(y); neighborsy.remove(x); DepthChoiceGenerator geny = new DepthChoiceGenerator(neighborsy.size(), neighborsy.size()); int[] choicey; while ((choicey = geny.next()) != null) { List<Node> condyMinus = GraphUtils.asList(choicey, neighborsy); // List<Node> parentsY = oldGraph.getParents(y); // parentsY.remove(x); // if (!condyMinus.containsAll(parentsY)) { // continue; // } List<Node> condyPlus = new ArrayList<Node>(condyMinus); condyPlus.add(x); double yPlus = score(y, condyPlus); double yMinus = score(y, condyMinus); // Checking them all at once is expensive but avoids lexical ordering problems in the // algorithm. if (normal(y, condyPlus) || normal(x, condxMinus) || normal(x, condxPlus) || normal(y, condyMinus)) { continue; } double delta = 0.0; if (strong) { if (yPlus <= xPlus + delta && xMinus <= yMinus + delta) { double score = combinedScore(xPlus, yMinus); if (yPlus <= yMinus + delta && xMinus <= xPlus + delta) { StringBuilder builder = new StringBuilder(); builder.append("\nStrong " + y + "->" + x + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); if (score > max) { max = score; left = true; right = false; } } else { StringBuilder builder = new StringBuilder(); builder.append("\nNo directed edge " + x + "--" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); } } else if (xPlus <= yPlus + delta && yMinus <= xMinus + delta) { double score = combinedScore(yPlus, xMinus); if (yMinus <= yPlus + delta && xPlus <= xMinus + delta) { StringBuilder builder = new StringBuilder(); builder.append("\nStrong " + x + "->" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); if (score > max) { max = score; left = false; right = true; } } else { StringBuilder builder = new StringBuilder(); builder.append("\nNo directed edge " + x + "--" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); } } else if (yPlus <= xPlus + delta && yMinus <= xMinus + delta) { double score = combinedScore(yPlus, xMinus); StringBuilder builder = new StringBuilder(); builder.append("\nNo directed edge " + x + "--" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); } else if (xPlus <= yPlus + delta && xMinus <= yMinus + delta) { double score = combinedScore(yPlus, xMinus); StringBuilder builder = new StringBuilder(); builder.append("\nNo directed edge " + x + "--" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); } } else { if (yPlus <= xPlus + delta && xMinus <= yMinus + delta) { double score = combinedScore(xPlus, yMinus); StringBuilder builder = new StringBuilder(); builder.append("\nWeak " + y + "->" + x + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); if (score > max) { max = score; left = true; right = false; } } else if (xPlus <= yPlus + delta && yMinus <= xMinus + delta) { double score = combinedScore(yPlus, xMinus); StringBuilder builder = new StringBuilder(); builder.append("\nWeak " + x + "->" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); if (score > max) { max = score; left = false; right = true; } } else if (yPlus <= xPlus + delta && yMinus <= xMinus + delta) { double score = combinedScore(yPlus, xMinus); StringBuilder builder = new StringBuilder(); builder.append("\nNo directed edge " + x + "--" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); } else if (xPlus <= yPlus + delta && xMinus <= yMinus + delta) { double score = combinedScore(yPlus, xMinus); StringBuilder builder = new StringBuilder(); builder.append("\nNo directed edge " + x + "--" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); } } } } for (double score : scoreReports.keySet()) { TetradLogger.getInstance().log("info", scoreReports.get(score)); } graph.removeEdges(x, y); if (left) { graph.addDirectedEdge(y, x); } if (right) { graph.addDirectedEdge(x, y); } if (!graph.isAdjacentTo(x, y)) { graph.addUndirectedEdge(x, y); } }
@Test public void test15() { RandomUtil.getInstance().setSeed(29999483L); try { Node x1 = new GraphNode("X1"); Node x2 = new GraphNode("X2"); Node x3 = new GraphNode("X3"); Node x4 = new GraphNode("X4"); Graph g = new EdgeListGraphSingleConnections(); g.addNode(x1); g.addNode(x2); g.addNode(x3); g.addNode(x4); g.addDirectedEdge(x1, x2); g.addDirectedEdge(x2, x3); g.addDirectedEdge(x3, x4); g.addDirectedEdge(x1, x4); GeneralizedSemPm pm = new GeneralizedSemPm(g); pm.setNodeExpression(x1, "E_X1"); pm.setNodeExpression(x2, "a1 * X1 + E_X2"); pm.setNodeExpression(x3, "a2 * X2 + E_X3"); pm.setNodeExpression(x4, "a3 * X1 + a4 * X3 ^ 2 + E_X4"); pm.setNodeExpression(pm.getErrorNode(x1), "Gamma(c1, c2)"); pm.setNodeExpression(pm.getErrorNode(x2), "ChiSquare(c3)"); pm.setNodeExpression(pm.getErrorNode(x3), "ChiSquare(c4)"); pm.setNodeExpression(pm.getErrorNode(x4), "ChiSquare(c5)"); pm.setParameterExpression("c1", "5"); pm.setParameterExpression("c2", "2"); pm.setParameterExpression("c3", "10"); pm.setParameterExpression("c4", "10"); pm.setParameterExpression("c5", "10"); pm.setParameterEstimationInitializationExpression("c1", "U(1, 5)"); pm.setParameterEstimationInitializationExpression("c2", "U(1, 5)"); pm.setParameterEstimationInitializationExpression("c3", "U(1, 5)"); pm.setParameterEstimationInitializationExpression("c4", "U(1, 5)"); pm.setParameterEstimationInitializationExpression("c5", "U(1, 5)"); GeneralizedSemIm im = new GeneralizedSemIm(pm); print("True model: "); print(im); DataSet data = im.simulateDataRecursive(1000, false); GeneralizedSemEstimator estimator = new GeneralizedSemEstimator(); GeneralizedSemIm estIm = estimator.estimate(pm, data); print("\n\n\nEstimated model: "); print(estIm); print(estimator.getReport()); double aSquaredStar = estimator.getaSquaredStar(); assertEquals(.79, aSquaredStar, 0.01); } catch (ParseException e) { e.printStackTrace(); } }
@Test public void test14() { RandomUtil.getInstance().setSeed(29999483L); try { Node x1 = new GraphNode("X1"); Node x2 = new GraphNode("X2"); Node x3 = new GraphNode("X3"); Node x4 = new GraphNode("X4"); Graph g = new EdgeListGraphSingleConnections(); g.addNode(x1); g.addNode(x2); g.addNode(x3); g.addNode(x4); g.addDirectedEdge(x1, x2); g.addDirectedEdge(x2, x3); g.addDirectedEdge(x3, x4); g.addDirectedEdge(x1, x4); GeneralizedSemPm pm = new GeneralizedSemPm(g); pm.setNodeExpression(x1, "E_X1"); pm.setNodeExpression(x2, "a1 * tan(X1) + E_X2"); pm.setNodeExpression(x3, "a2 * tan(X2) + E_X3"); pm.setNodeExpression(x4, "a3 * tan(X1) + a4 * tan(X3) ^ 2 + E_X4"); pm.setNodeExpression(pm.getErrorNode(x1), "N(0, c1)"); pm.setNodeExpression(pm.getErrorNode(x2), "N(0, c2)"); pm.setNodeExpression(pm.getErrorNode(x3), "N(0, c3)"); pm.setNodeExpression(pm.getErrorNode(x4), "N(0, c4)"); pm.setParameterExpression("a1", "1"); pm.setParameterExpression("a2", "1"); pm.setParameterExpression("a3", "1"); pm.setParameterExpression("a4", "1"); pm.setParameterExpression("c1", "4"); pm.setParameterExpression("c2", "4"); pm.setParameterExpression("c3", "4"); pm.setParameterExpression("c4", "4"); GeneralizedSemIm im = new GeneralizedSemIm(pm); print("True model: "); print(im); DataSet data = im.simulateDataRecursive(1000, false); GeneralizedSemIm imInit = new GeneralizedSemIm(pm); imInit.setParameterValue("c1", 8); imInit.setParameterValue("c2", 8); imInit.setParameterValue("c3", 8); imInit.setParameterValue("c4", 8); GeneralizedSemEstimator estimator = new GeneralizedSemEstimator(); GeneralizedSemIm estIm = estimator.estimate(pm, data); print("\n\n\nEstimated model: "); print(estIm); print(estimator.getReport()); double aSquaredStar = estimator.getaSquaredStar(); assertEquals(71.25, aSquaredStar, 0.01); } catch (ParseException e) { e.printStackTrace(); } }