示例#1
0
 public SelectionGhost(ShapeRenderer shapeRenderer, Actor representedActor) {
   this.shapeRenderer = shapeRenderer;
   this.representedActor = representedActor;
   setOrigin(representedActor.getOriginX(), representedActor.getOriginY());
   setBounds(
       representedActor.getX(),
       representedActor.getY(),
       representedActor.getWidth(),
       representedActor.getHeight());
   setRotation(representedActor.getRotation());
   setScale(representedActor.getScaleX(), representedActor.getScaleY());
   startingRotation = representedActor.getRotation();
 }
示例#2
0
  /** Sets position, rotation, scale and origin in actor to meet the 3 given points */
  public static void applyTransformation(
      Actor actor, Vector2 origin, Vector2 tangent, Vector2 normal) {
    /*
     * We are going to calculate the affine transformation for the actor to
     * fit the bounds represented by the handles. The affine transformation
     * is defined as follows:
     */
    // |a b tx|
    // |c d ty|=|Translation Matrix| x |Scale Matrix| x |Rotation
    // Matrix|
    // |0 0 1 |
    /*
     * More info about affine transformations:
     * https://people.gnome.org/~mathieu
     * /libart/libart-affine-transformation-matrices.html, To obtain the
     * matrix, we want to resolve the following equation system:
     */
    // | a b tx| |0| |o.x|
    // | c d ty|*|0|=|o.y|
    // | 0 0 1 | |1| | 1 |
    //
    // | a b tx| |w| |t.x|
    // | c d ty|*|0|=|t.y|
    // | 0 0 1 | |1| | 1 |
    //
    // | a b tx| |0| |n.x|
    // | c d ty|*|h|=|n.y|
    // | 0 0 1 | |1| | 1 |
    /*
     * where o is handles[0] (origin), t is handles[2] (tangent) and n is
     * handles[6] (normal), w is actor.getWidth() and h is
     * actor.getHeight().
     *
     * This matrix defines that the 3 points defining actor bounds are
     * transformed to the 3 points defining modifier bounds. E.g., we want
     * that actor origin (0,0) is transformed to (handles[0].x,
     * handles[0].y), and that is expressed in the first equation.
     *
     * Resolving these equations is obtained:
     */
    // a = (t.x - o.y) / w
    // b = (t.y - o.y) / w
    // c = (n.x - o.x) / h
    // d = (n.y - o.y) / h
    /*
     * Values for translation, scale and rotation contained by the matrix
     * can be obtained directly making operations over a, b, c and d:
     */
    // tx = o.x
    // ty = o.y
    // sx = sqrt(a^2+b^2)
    // sy = sqrt(c^2+d^2)
    // rotation = atan(c/d)
    // or
    // rotation = atan(-b/a)
    /*
     * Rotation can give two different values (this happens when there is
     * more than one way of obtaining the same transformation). To avoid
     * that, we ignore the rotation to obtain the final values.
     */

    Vector2 tmp1 = Pools.obtain(Vector2.class);
    Vector2 tmp2 = Pools.obtain(Vector2.class);
    Vector2 tmp3 = Pools.obtain(Vector2.class);
    Vector2 tmp4 = Pools.obtain(Vector2.class);
    Vector2 tmp5 = Pools.obtain(Vector2.class);

    Vector2 o = tmp1.set(origin.x, origin.y);
    Vector2 t = tmp2.set(tangent.x, tangent.y);
    Vector2 n = tmp3.set(normal.x, normal.y);

    Vector2 vt = tmp4.set(t).sub(o);
    Vector2 vn = tmp5.set(n).sub(o);

    // Ignore rotation
    float rotation = actor.getRotation();
    vt.rotate(-rotation);
    vn.rotate(-rotation);

    t.set(vt).add(o);
    n.set(vn).add(o);

    Vector2 bottomLeft = Pools.obtain(Vector2.class);
    Vector2 size = Pools.obtain(Vector2.class);

    calculateBounds(actor, bottomLeft, size);

    float a = (t.x - o.x) / size.x;
    float c = (t.y - o.y) / size.x;
    float b = (n.x - o.x) / size.y;
    float d = (n.y - o.y) / size.y;

    Pools.free(tmp1);
    Pools.free(tmp2);
    Pools.free(tmp3);
    Pools.free(tmp4);
    Pools.free(tmp5);
    Pools.free(bottomLeft);
    Pools.free(size);

    // Math.sqrt gives a positive value, but it also have a negatives.
    // The
    // signum is calculated computing the current rotation
    float signumX = vt.angle() > 90.0f && vt.angle() < 270.0f ? -1.0f : 1.0f;
    float signumY = vn.angle() > 180.0f ? -1.0f : 1.0f;

    float scaleX = (float) Math.sqrt(a * a + b * b) * signumX;
    float scaleY = (float) Math.sqrt(c * c + d * d) * signumY;

    actor.setScale(scaleX, scaleY);

    /*
     * To obtain the correct translation value we need to subtract the
     * amount of translation due to the origin.
     */
    tmpMatrix.setToTranslation(actor.getOriginX(), actor.getOriginY());
    tmpMatrix.rotate(actor.getRotation());
    tmpMatrix.scale(actor.getScaleX(), actor.getScaleY());
    tmpMatrix.translate(-actor.getOriginX(), -actor.getOriginY());

    /*
     * Now, the matrix has how much translation is due to the origin
     * involved in the rotation and scaling operations
     */
    float x = o.x - tmpMatrix.getValues()[Matrix3.M02];
    float y = o.y - tmpMatrix.getValues()[Matrix3.M12];
    actor.setPosition(x, y);
  }