/** * Set the output format. Takes the current average class values and m_InputFormat and calls * setOutputFormat(Instances) appropriately. */ private void setOutputFormat() { Instances newData; FastVector newAtts, newVals; // Compute new attributes newAtts = new FastVector(getInputFormat().numAttributes()); for (int j = 0; j < getInputFormat().numAttributes(); j++) { Attribute att = getInputFormat().attribute(j); if (!m_AttIndices.isInRange(j) || !att.isString()) { // We don't have to copy the attribute because the // attribute index remains unchanged. newAtts.addElement(att); } else { // Compute list of attribute values newVals = new FastVector(att.numValues()); for (int i = 0; i < att.numValues(); i++) { newVals.addElement(att.value(i)); } newAtts.addElement(new Attribute(att.name(), newVals)); } } // Construct new header newData = new Instances(getInputFormat().relationName(), newAtts, 0); newData.setClassIndex(getInputFormat().classIndex()); setOutputFormat(newData); }
@Override public int compare(InstanceHolder o1, InstanceHolder o2) { // both missing is equal if (o1.m_instance.isMissing(m_attribute) && o2.m_instance.isMissing(m_attribute)) { return 0; } // one missing - missing instances should all be at the end // regardless of whether order is ascending or descending if (o1.m_instance.isMissing(m_attribute)) { return 1; } if (o2.m_instance.isMissing(m_attribute)) { return -1; } int cmp = 0; if (!m_attribute.isString() && !m_attribute.isRelationValued()) { double val1 = o1.m_instance.value(m_attribute); double val2 = o2.m_instance.value(m_attribute); cmp = Double.compare(val1, val2); } else if (m_attribute.isString()) { String val1 = o1.m_stringVals.get(m_attribute.name()); String val2 = o2.m_stringVals.get(m_attribute.name()); /* * String val1 = o1.stringValue(m_attribute); String val2 = * o2.stringValue(m_attribute); */ // TODO case insensitive? cmp = val1.compareTo(val2); } else { throw new IllegalArgumentException( "Can't sort according to " + "relation-valued attribute values!"); } if (m_descending) { return -cmp; } return cmp; }
/** Find the fold attribute within a dataset. */ private Attribute getAttribute(Instances data) { SingleIndex index = new SingleIndex(super.getAttributeIndex()); index.setUpper(data.numAttributes() - 1); Attribute att = data.attribute(index.getIndex()); if (att == null) throw new NoSuchElementException( "attribute #" + super.getAttributeIndex() + " does not exist"); if (!att.isNominal() && !att.isString()) throw new IllegalArgumentException("Attribute '" + att + "' is not nominal"); return att; }
/** * Constructs an instance suitable for passing to the model for scoring * * @param incoming the incoming instance * @return an instance with values mapped to be consistent with what the model is expecting */ protected Instance mapIncomingFieldsToModelFields(Instance incoming) { Instances modelHeader = m_model.getHeader(); double[] vals = new double[modelHeader.numAttributes()]; for (int i = 0; i < modelHeader.numAttributes(); i++) { if (m_attributeMap[i] < 0) { // missing or type mismatch vals[i] = Utils.missingValue(); continue; } Attribute modelAtt = modelHeader.attribute(i); Attribute incomingAtt = incoming.dataset().attribute(m_attributeMap[i]); if (incoming.isMissing(incomingAtt.index())) { vals[i] = Utils.missingValue(); continue; } if (modelAtt.isNumeric()) { vals[i] = incoming.value(m_attributeMap[i]); } else if (modelAtt.isNominal()) { String incomingVal = incoming.stringValue(m_attributeMap[i]); int modelIndex = modelAtt.indexOfValue(incomingVal); if (modelIndex < 0) { vals[i] = Utils.missingValue(); } else { vals[i] = modelIndex; } } else if (modelAtt.isString()) { vals[i] = 0; modelAtt.setStringValue(incoming.stringValue(m_attributeMap[i])); } } if (modelHeader.classIndex() >= 0) { // set class to missing value vals[modelHeader.classIndex()] = Utils.missingValue(); } Instance newInst = null; if (incoming instanceof SparseInstance) { newInst = new SparseInstance(incoming.weight(), vals); } else { newInst = new DenseInstance(incoming.weight(), vals); } newInst.setDataset(modelHeader); return newInst; }
public MappingInfo(Instances dataSet, MiningSchema miningSchema, Logger log) throws Exception { m_log = log; // miningSchema.convertStringAttsToNominal(); Instances fieldsI = miningSchema.getMiningSchemaAsInstances(); m_fieldsMap = new int[fieldsI.numAttributes()]; m_nominalValueMaps = new int[fieldsI.numAttributes()][]; for (int i = 0; i < fieldsI.numAttributes(); i++) { String schemaAttName = fieldsI.attribute(i).name(); boolean found = false; for (int j = 0; j < dataSet.numAttributes(); j++) { if (dataSet.attribute(j).name().equals(schemaAttName)) { Attribute miningSchemaAtt = fieldsI.attribute(i); Attribute incomingAtt = dataSet.attribute(j); // check type match if (miningSchemaAtt.type() != incomingAtt.type()) { throw new Exception( "[MappingInfo] type mismatch for field " + schemaAttName + ". Mining schema type " + miningSchemaAtt.toString() + ". Incoming type " + incomingAtt.toString() + "."); } // check nominal values (number, names...) if (miningSchemaAtt.numValues() != incomingAtt.numValues()) { String warningString = "[MappingInfo] WARNING: incoming nominal attribute " + incomingAtt.name() + " does not have the same " + "number of values as the corresponding mining " + "schema attribute."; if (m_log != null) { m_log.logMessage(warningString); } else { System.err.println(warningString); } } if (miningSchemaAtt.isNominal() || miningSchemaAtt.isString()) { int[] valuesMap = new int[incomingAtt.numValues()]; for (int k = 0; k < incomingAtt.numValues(); k++) { String incomingNomVal = incomingAtt.value(k); int indexInSchema = miningSchemaAtt.indexOfValue(incomingNomVal); if (indexInSchema < 0) { String warningString = "[MappingInfo] WARNING: incoming nominal attribute " + incomingAtt.name() + " has value " + incomingNomVal + " that doesn't occur in the mining schema."; if (m_log != null) { m_log.logMessage(warningString); } else { System.err.println(warningString); } valuesMap[k] = UNKNOWN_NOMINAL_VALUE; } else { valuesMap[k] = indexInSchema; } } m_nominalValueMaps[i] = valuesMap; } /*if (miningSchemaAtt.isNominal()) { for (int k = 0; k < miningSchemaAtt.numValues(); k++) { if (!miningSchemaAtt.value(k).equals(incomingAtt.value(k))) { throw new Exception("[PMMLUtils] value " + k + " (" + miningSchemaAtt.value(k) + ") does not match " + "incoming value (" + incomingAtt.value(k) + ") for attribute " + miningSchemaAtt.name() + "."); } } }*/ found = true; m_fieldsMap[i] = j; } } if (!found) { throw new Exception( "[MappingInfo] Unable to find a match for mining schema " + "attribute " + schemaAttName + " in the " + "incoming instances!"); } } // check class attribute (if set) if (fieldsI.classIndex() >= 0) { if (dataSet.classIndex() < 0) { // first see if we can find a matching class String className = fieldsI.classAttribute().name(); Attribute classMatch = dataSet.attribute(className); if (classMatch == null) { throw new Exception( "[MappingInfo] Can't find match for target field " + className + "in incoming instances!"); } dataSet.setClass(classMatch); } else if (!fieldsI.classAttribute().name().equals(dataSet.classAttribute().name())) { throw new Exception( "[MappingInfo] class attribute in mining schema does not match " + "class attribute in incoming instances!"); } } // Set up the textual description of the mapping fieldsMappingString(fieldsI, dataSet); }
/** * The procedure implementing the SMOTE algorithm. The output instances are pushed onto the output * queue for collection. * * @throws Exception if provided options cannot be executed on input instances */ protected void doSMOTE() throws Exception { int minIndex = 0; int min = Integer.MAX_VALUE; if (m_DetectMinorityClass) { // find minority class int[] classCounts = getInputFormat().attributeStats(getInputFormat().classIndex()).nominalCounts; for (int i = 0; i < classCounts.length; i++) { if (classCounts[i] != 0 && classCounts[i] < min) { min = classCounts[i]; minIndex = i; } } } else { String classVal = getClassValue(); if (classVal.equalsIgnoreCase("first")) { minIndex = 1; } else if (classVal.equalsIgnoreCase("last")) { minIndex = getInputFormat().numClasses(); } else { minIndex = Integer.parseInt(classVal); } if (minIndex > getInputFormat().numClasses()) { throw new Exception("value index must be <= the number of classes"); } minIndex--; // make it an index } int nearestNeighbors; if (min <= getNearestNeighbors()) { nearestNeighbors = min - 1; } else { nearestNeighbors = getNearestNeighbors(); } if (nearestNeighbors < 1) throw new Exception("Cannot use 0 neighbors!"); // compose minority class dataset // also push all dataset instances Instances sample = getInputFormat().stringFreeStructure(); Enumeration instanceEnum = getInputFormat().enumerateInstances(); while (instanceEnum.hasMoreElements()) { Instance instance = (Instance) instanceEnum.nextElement(); push((Instance) instance.copy()); if ((int) instance.classValue() == minIndex) { sample.add(instance); } } // compute Value Distance Metric matrices for nominal features Map vdmMap = new HashMap(); Enumeration attrEnum = getInputFormat().enumerateAttributes(); while (attrEnum.hasMoreElements()) { Attribute attr = (Attribute) attrEnum.nextElement(); if (!attr.equals(getInputFormat().classAttribute())) { if (attr.isNominal() || attr.isString()) { double[][] vdm = new double[attr.numValues()][attr.numValues()]; vdmMap.put(attr, vdm); int[] featureValueCounts = new int[attr.numValues()]; int[][] featureValueCountsByClass = new int[getInputFormat().classAttribute().numValues()][attr.numValues()]; instanceEnum = getInputFormat().enumerateInstances(); while (instanceEnum.hasMoreElements()) { Instance instance = (Instance) instanceEnum.nextElement(); int value = (int) instance.value(attr); int classValue = (int) instance.classValue(); featureValueCounts[value]++; featureValueCountsByClass[classValue][value]++; } for (int valueIndex1 = 0; valueIndex1 < attr.numValues(); valueIndex1++) { for (int valueIndex2 = 0; valueIndex2 < attr.numValues(); valueIndex2++) { double sum = 0; for (int classValueIndex = 0; classValueIndex < getInputFormat().numClasses(); classValueIndex++) { double c1i = featureValueCountsByClass[classValueIndex][valueIndex1]; double c2i = featureValueCountsByClass[classValueIndex][valueIndex2]; double c1 = featureValueCounts[valueIndex1]; double c2 = featureValueCounts[valueIndex2]; double term1 = c1i / c1; double term2 = c2i / c2; sum += Math.abs(term1 - term2); } vdm[valueIndex1][valueIndex2] = sum; } } } } } // use this random source for all required randomness Random rand = new Random(getRandomSeed()); // find the set of extra indices to use if the percentage is not evenly // divisible by 100 List extraIndices = new LinkedList(); double percentageRemainder = (getPercentage() / 100) - Math.floor(getPercentage() / 100.0); int extraIndicesCount = (int) (percentageRemainder * sample.numInstances()); if (extraIndicesCount >= 1) { for (int i = 0; i < sample.numInstances(); i++) { extraIndices.add(i); } } Collections.shuffle(extraIndices, rand); extraIndices = extraIndices.subList(0, extraIndicesCount); Set extraIndexSet = new HashSet(extraIndices); // the main loop to handle computing nearest neighbors and generating SMOTE // examples from each instance in the original minority class data Instance[] nnArray = new Instance[nearestNeighbors]; for (int i = 0; i < sample.numInstances(); i++) { Instance instanceI = sample.instance(i); // find k nearest neighbors for each instance List distanceToInstance = new LinkedList(); for (int j = 0; j < sample.numInstances(); j++) { Instance instanceJ = sample.instance(j); if (i != j) { double distance = 0; attrEnum = getInputFormat().enumerateAttributes(); while (attrEnum.hasMoreElements()) { Attribute attr = (Attribute) attrEnum.nextElement(); if (!attr.equals(getInputFormat().classAttribute())) { double iVal = instanceI.value(attr); double jVal = instanceJ.value(attr); if (attr.isNumeric()) { distance += Math.pow(iVal - jVal, 2); } else { distance += ((double[][]) vdmMap.get(attr))[(int) iVal][(int) jVal]; } } } distance = Math.pow(distance, .5); distanceToInstance.add(new Object[] {distance, instanceJ}); } } // sort the neighbors according to distance Collections.sort( distanceToInstance, new Comparator() { public int compare(Object o1, Object o2) { double distance1 = (Double) ((Object[]) o1)[0]; double distance2 = (Double) ((Object[]) o2)[0]; return Double.compare(distance1, distance2); } }); // populate the actual nearest neighbor instance array Iterator entryIterator = distanceToInstance.iterator(); int j = 0; while (entryIterator.hasNext() && j < nearestNeighbors) { nnArray[j] = (Instance) ((Object[]) entryIterator.next())[1]; j++; } // create synthetic examples int n = (int) Math.floor(getPercentage() / 100); while (n > 0 || extraIndexSet.remove(i)) { double[] values = new double[sample.numAttributes()]; int nn = rand.nextInt(nearestNeighbors); attrEnum = getInputFormat().enumerateAttributes(); while (attrEnum.hasMoreElements()) { Attribute attr = (Attribute) attrEnum.nextElement(); if (!attr.equals(getInputFormat().classAttribute())) { if (attr.isNumeric()) { double dif = nnArray[nn].value(attr) - instanceI.value(attr); double gap = rand.nextDouble(); values[attr.index()] = (instanceI.value(attr) + gap * dif); } else if (attr.isDate()) { double dif = nnArray[nn].value(attr) - instanceI.value(attr); double gap = rand.nextDouble(); values[attr.index()] = (long) (instanceI.value(attr) + gap * dif); } else { int[] valueCounts = new int[attr.numValues()]; int iVal = (int) instanceI.value(attr); valueCounts[iVal]++; for (int nnEx = 0; nnEx < nearestNeighbors; nnEx++) { int val = (int) nnArray[nnEx].value(attr); valueCounts[val]++; } int maxIndex = 0; int max = Integer.MIN_VALUE; for (int index = 0; index < attr.numValues(); index++) { if (valueCounts[index] > max) { max = valueCounts[index]; maxIndex = index; } } values[attr.index()] = maxIndex; } } } values[sample.classIndex()] = minIndex; Instance synthetic = new Instance(1.0, values); push(synthetic); n--; } } }