/** * Process the given Mat, finding, classifying and displaying all resistors present. * * @param originalImg The image to parse */ private void parseImage(Mat originalImg) { Mat workingCopy = new Mat(); originalImg.copyTo(workingCopy); // blur the original image to form resistor blobs. should remove white/silver/grey bands which // would otherwise // get picked up as part of the background, leads or shadows. Mat blurred = new Mat(); // Imgproc.medianBlur(workingCopy, blurred, 29); Imgproc.blur(workingCopy, blurred, new Size(20, 20)); // faster // get a mask off the background Mat resistorMask = new Mat(); generateResistorMask(blurred, Imgproc.THRESH_BINARY).copyTo(resistorMask); // find countours in mask List<MatOfPoint> contours = getContours(resistorMask, originalImg, true); // extract resistors in input image List<Resistor> resistors = extractResistorsFromContours(contours, originalImg, true); // segment and extract colour bands for each resistor extractColourBandsAndClassify(resistors, true); // calculate and display resistance value for each resistor based on classified colour bands calculateAndDisplayResistanceValues(resistors); }
/** * @param image * @param size * @return Mat */ public static Mat cannyDetection(Mat image, int size) { Mat grayImage = new Mat(); Mat detectedEdges = new Mat(); // convert to grayscale Imgproc.cvtColor(image, grayImage, Imgproc.COLOR_BGR2GRAY); // reduce noise with a 3x3 kernel Imgproc.blur(grayImage, detectedEdges, new Size(3, 3)); // canny detector, with ratio of lower:upper threshold of 3:1 Imgproc.Canny(detectedEdges, detectedEdges, size, size / 3, 7, false); return detectedEdges; }
// OpenCV code private void modifyImage(String fileName) { // Create a face detector from the cascade file CascadeClassifier faceDetector = new CascadeClassifier("haarcascade_frontalface_alt.xml"); Mat image = Highgui.imread(fileName); // Detect faces in the image. // MatOfRect is a special container class for Rect. MatOfRect faceDetections = new MatOfRect(); faceDetector.detectMultiScale(image, faceDetections); // Blur each face for (Rect rect : faceDetections.toArray()) { Mat faceArea = image.submat(rect); Imgproc.blur(faceArea, faceArea, new Size(30, 30)); } // Save the modified image Highgui.imwrite("edited_" + fileName, image); }
/** * @param inputImg * @param minValue * @param maxValue * @return Mat */ public static Mat thresholding(Mat inputImg, Integer minValue, Integer maxValue) { Mat frame = inputImg; // яскравість // frame.convertTo(frame , -1, 10d * 33 / 100, 0); // Imgproc.medianBlur(frame,frame, 17); // Core.bitwise_not(frame,frame ); // Mat frame = new Mat(image.rows(), image.cols(), image.type()); // frame.convertTo(frame, -1, 10d * 20 / 100, 0); Mat hsvImg = new Mat(); List<Mat> hsvPlanes = new ArrayList<>(); Mat thresholdImg = new Mat(); int thresh_type = Imgproc.THRESH_BINARY_INV; // if (this.inverse.isSelected()) // thresh_type = Imgproc.THRESH_BINARY; // threshold the image with the average hue value // System.out.println("size " +frame.size()); hsvImg.create(frame.size(), CvType.CV_8U); // Imgproc.cvtColor(frame, hsvImg, Imgproc.COLOR_BGR2HSV); Core.split(hsvImg, hsvPlanes); // get the average hue value of the image // double threshValue = PreProcessingOperation.getHistAverage(hsvImg, hsvPlanes.get(0)); // System.out.println(threshValue); /* if(threshValue > 40){ maxValue = 160; }else{ maxValue = 40; }*/ // Imgproc.threshold(hsvPlanes.get(1), thresholdImg, minValue , maxValue , thresh_type); Imgproc.blur(thresholdImg, thresholdImg, new Size(27, 27)); // dilate to fill gaps, erode to smooth edges Imgproc.dilate(thresholdImg, thresholdImg, new Mat(), new Point(-1, -1), 1); Imgproc.erode(thresholdImg, thresholdImg, new Mat(), new Point(-1, -1), 1); Imgproc.threshold(thresholdImg, thresholdImg, minValue, maxValue, Imgproc.THRESH_BINARY); // create the new image Mat foreground = new Mat(frame.size(), CvType.CV_8UC3, new Scalar(255, 255, 255)); Core.bitwise_not(thresholdImg, foreground); frame.copyTo(foreground, thresholdImg); /////////////////////////////////////////////////////////////////////////////////////// /// //// return foreground; /*Mat hsvImg = new Mat(); List<Mat> hsvPlanes = new ArrayList<>(); Mat thresholdImg = new Mat(); int thresh_type = Imgproc.THRESH_BINARY_INV; // threshold the image with the average hue value hsvImg.create(inputImg.size(), CvType.CV_8U); Imgproc.cvtColor(inputImg, hsvImg, Imgproc.COLOR_BGR2HSV); Core.split(hsvImg, hsvPlanes); // get the average hue value of the image double threshValue = PreProcessingOperation.getHistAverage(hsvImg, hsvPlanes.get(0)); Imgproc.threshold(hsvPlanes.get(0), thresholdImg, minValue, maxValue, thresh_type); Imgproc.blur(thresholdImg, thresholdImg, new Size(3, 3)); // dilate to fill gaps, erode to smooth edges Imgproc.dilate(thresholdImg, thresholdImg, new Mat(), new Point(-1, -1), 3); Imgproc.erode(thresholdImg, thresholdImg, new Mat(), new Point(-1, -1), 1); Imgproc.threshold(thresholdImg, thresholdImg, minValue, maxValue, Imgproc.THRESH_BINARY); // create the new image Mat foreground = new Mat(inputImg.size(), CvType.CV_8UC3, new Scalar(255, 255, 255)); inputImg.copyTo(foreground, thresholdImg); Core.bitwise_not(foreground,foreground); return foreground;*/ }