private static Bitmap canny(Bitmap image) { // convert image to matrix Mat Mat1 = new Mat(image.getWidth(), image.getHeight(), CvType.CV_32FC1); Utils.bitmapToMat(image, Mat1); // create temporary matrix2 Mat Mat2 = new Mat(image.getWidth(), image.getHeight(), CvType.CV_32FC1); // convert image to grayscale Imgproc.cvtColor(Mat1, Mat2, Imgproc.COLOR_BGR2GRAY); // doing a gaussian blur prevents getting a lot of false hits Imgproc.GaussianBlur(Mat2, Mat1, new Size(3, 3), 2, 2); // ? // now apply canny function int param_threshold1 = 25; // manually defined int param_threshold2 = param_threshold1 * 3; // Cannys recommendation Imgproc.Canny(Mat1, Mat2, param_threshold1, param_threshold2); // ? Imgproc.cvtColor(Mat2, Mat1, Imgproc.COLOR_GRAY2BGRA, 4); // convert matrix to output bitmap Bitmap output = Bitmap.createBitmap(image.getWidth(), image.getHeight(), Bitmap.Config.RGB_565); Utils.matToBitmap(Mat1, output); return output; }
/** * Locate rectangles in an image * * @param grayImage Grayscale image * @return Rectangle locations */ public RectangleLocationResult locateRectangles(Mat grayImage) { Mat gray = grayImage.clone(); // Filter out some noise Filter.downsample(gray, 2); Filter.upsample(gray, 2); Mat cacheHierarchy = new Mat(); Mat grayTemp = new Mat(); List<Rectangle> rectangles = new ArrayList<>(); List<Contour> contours = new ArrayList<>(); Imgproc.Canny(gray, grayTemp, 0, THRESHOLD_CANNY, APERTURE_CANNY, true); Filter.dilate(gray, 2); List<MatOfPoint> contoursTemp = new ArrayList<>(); // Find contours - the parameters here are very important to compression and retention Imgproc.findContours( grayTemp, contoursTemp, cacheHierarchy, Imgproc.CV_RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); // For each contour, test whether the contour is a rectangle // List<Contour> contours = new ArrayList<>(); MatOfPoint2f approx = new MatOfPoint2f(); for (MatOfPoint co : contoursTemp) { MatOfPoint2f matOfPoint2f = new MatOfPoint2f(co.toArray()); Contour c = new Contour(co); // Attempt to fit the contour to the best polygon Imgproc.approxPolyDP( matOfPoint2f, approx, c.arcLength(true) * EPLISON_APPROX_TOLERANCE_FACTOR, true); Contour approxContour = new Contour(approx); // Make sure the contour is big enough, CLOSED (convex), and has exactly 4 points if (approx.toArray().length == 4 && Math.abs(approxContour.area()) > 1000 && approxContour.isClosed()) { // TODO contours and rectangles array may not match up, but why would they? contours.add(approxContour); // Check each angle to be approximately 90 degrees double maxCosine = 0; for (int j = 2; j < 5; j++) { double cosine = Math.abs( MathUtil.angle( approx.toArray()[j % 4], approx.toArray()[j - 2], approx.toArray()[j - 1])); maxCosine = Math.max(maxCosine, cosine); } if (maxCosine < MAX_COSINE_VALUE) { // Convert the points to a rectangle instance rectangles.add(new Rectangle(approx.toArray())); } } } return new RectangleLocationResult(contours, rectangles); }
private static Mat findLargestRectangle(Mat original_image) { Mat imgSource = original_image.clone(); // convert the image to black and white Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BGR2GRAY); // convert the image to black and white does (8 bit) Imgproc.Canny(imgSource, imgSource, 50, 50); // apply gaussian blur to smoothen lines of dots Imgproc.GaussianBlur(imgSource, imgSource, new Size(5, 5), 5); // find the contours List<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Imgproc.findContours( imgSource, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); double maxArea = -1; MatOfPoint temp_contour = contours.get(0); // the largest is at the // index 0 for starting // point MatOfPoint2f approxCurve = new MatOfPoint2f(); List<MatOfPoint> largest_contours = new ArrayList<MatOfPoint>(); for (int idx = 0; idx < contours.size(); idx++) { temp_contour = contours.get(idx); double contourarea = Imgproc.contourArea(temp_contour); // compare this contour to the previous largest contour found if (contourarea > maxArea) { // check if this contour is a square MatOfPoint2f new_mat = new MatOfPoint2f(temp_contour.toArray()); int contourSize = (int) temp_contour.total(); Imgproc.approxPolyDP(new_mat, approxCurve, contourSize * 0.05, true); if (approxCurve.total() == 4) { maxArea = contourarea; largest_contours.add(temp_contour); } } } MatOfPoint temp_largest = largest_contours.get(largest_contours.size() - 1); largest_contours = new ArrayList<MatOfPoint>(); largest_contours.add(temp_largest); // Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BayerBG2RGB); Imgproc.drawContours(original_image, largest_contours, -1, new Scalar(0, 255, 0), 10); // Mat perspectiveTransform = new Mat(3, 3, CvType.CV_32FC1); // Imgproc.warpPerspective(original_image, imgSource, // perspectiveTransform, new Size(300,300)); Highgui.imwrite(output, original_image); // create the new image here using the largest detected square // Toast.makeText(getApplicationContext(), "Largest Contour: ", // Toast.LENGTH_LONG).show(); return imgSource; }
/** * @param image * @param size * @return Mat */ public static Mat cannyDetection(Mat image, int size) { Mat grayImage = new Mat(); Mat detectedEdges = new Mat(); // convert to grayscale Imgproc.cvtColor(image, grayImage, Imgproc.COLOR_BGR2GRAY); // reduce noise with a 3x3 kernel Imgproc.blur(grayImage, detectedEdges, new Size(3, 3)); // canny detector, with ratio of lower:upper threshold of 3:1 Imgproc.Canny(detectedEdges, detectedEdges, size, size / 3, 7, false); return detectedEdges; }
/** * Locate ellipses within an image * * @param grayImage Grayscale image * @return Ellipse locations */ public EllipseLocationResult locateEllipses(Mat grayImage) { Mat gray = grayImage.clone(); Filter.downsample(gray, 2); Filter.upsample(gray, 2); Imgproc.Canny(gray, gray, 5, 75, 3, true); Filter.dilate(gray, 2); Mat cacheHierarchy = new Mat(); List<MatOfPoint> contoursTemp = new ArrayList<>(); // Find contours - the parameters here are very important to compression and retention Imgproc.findContours( gray, contoursTemp, cacheHierarchy, Imgproc.CV_RETR_TREE, Imgproc.CHAIN_APPROX_TC89_KCOS); // List contours List<Contour> contours = new ArrayList<>(); for (MatOfPoint co : contoursTemp) { contours.add(new Contour(co)); } // Find ellipses by finding fit List<Ellipse> ellipses = new ArrayList<>(); for (MatOfPoint co : contoursTemp) { contours.add(new Contour(co)); // Contour must have at least 6 points for fitEllipse if (co.toArray().length < 6) continue; // Copy MatOfPoint to MatOfPoint2f MatOfPoint2f matOfPoint2f = new MatOfPoint2f(co.toArray()); // Fit an ellipse to the current contour Ellipse ellipse = new Ellipse(Imgproc.fitEllipse(matOfPoint2f)); // Draw ellipse ellipses.add(ellipse); } return new EllipseLocationResult(contours, ellipses); }
public void processWithContours(Mat in, Mat out) { int playSquares = 32; // number of playable game board squares // keep track of starting row square int parity = 0; // 0 is even, 1 is odd, tied to row number int count = 0; // row square int rowNum = 0; // row number, starting at 0 int vsegment = in.rows() / 8; // only accounts 8 playable int hsegment = in.cols() / 10; // 8 playable, 2 capture int hOffset = hsegment * 2; // offset for playable board int vOffset = vsegment + 40; // For angle of camera int dx = 80; int ddx = 0; hsegment -= 16; int dy = 20; vsegment -= 24; int ddy = 0; // Go through all playable squares for (int i = 0; i < playSquares; i++) { // change offset depending on the row if (parity == 0) // playable squares start on 2nd square from left { if (rowNum >= 5) dx -= 3; hOffset = hsegment * 2 + dx; } else // playable squares start on immediate left { if (rowNum >= 5) dx -= 3; hOffset = hsegment + dx; } if (rowNum == 0) ddy = 5; if (rowNum == 4) if (count == 6) ddx = 10; if (rowNum == 5) { if (count == 0) ddx = -6; else if (count == 2) ddx = 6; else if (count == 4) ddx = 12; else if (count == 6) ddx = 20; } if (rowNum == 6) { if (count == 0) ddx = 0; else if (count == 2) ddx = 16; else if (count == 4) ddx = 32; else if (count == 6) ddx = 40; } if (rowNum == 7) { if (count == 0) ddx = 6; else if (count == 2) ddx = 24; else if (count == 4) ddx = 40; else ddx = 52; } // find where roi should be // System.out.println("" + vOffset); Point p1 = new Point( hOffset + count * hsegment + ddx + 5, vOffset + rowNum * vsegment - dy - 5 - ddy); // top left point of rectangle (x,y) Point p2 = new Point( hOffset + (count + 1) * hsegment + ddx - 5, vOffset + (rowNum + 1) * vsegment - dy - 5 - ddy); // bottom right point of rectangle (x,y) // create rectangle that is board square Rect bound = new Rect(p1, p2); Mat roi; char color; if (i == 0) { // frame only includes rectangle roi = new Mat(in, bound); // get the color color = identifyColor(roi); // copy input image to output image in.copyTo(out); } else { // frame only includes rectangle roi = new Mat(out, bound); // get the color color = identifyColor(roi); } Imgproc.cvtColor(roi, roi, Imgproc.COLOR_BGR2GRAY); // change to single color Mat canny = new Mat(); Imgproc.Canny(roi, canny, 20, 40); // make image a canny image that is only edges; 2,4 // lower threshold values find more edges List<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Mat hierarchy = new Mat(); // holds nested contour information Imgproc.findContours( canny, contours, hierarchy, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); // Imgproc.RETR_LIST, TREE System.out.println(++test + "\t" + contours.size()); if (contours.size() > 3) // or error value for color is below 1 { switch (color) { case COLOR_BLUE: // Imgproc.rectangle(out, p1, p2, new Scalar(255, 0, 0), 2); Core.rectangle(out, p1, p2, new Scalar(255, 0, 0), 2); board[i] = CheckersBoard.BLACK; // end user's piece break; case COLOR_ORANGE: // Imgproc.rectangle(out, p1, p2, new Scalar(0, 128, 255), 2); Core.rectangle(out, p1, p2, new Scalar(0, 128, 255), 2); board[i] = CheckersBoard.WHITE; // system's piece break; case COLOR_WHITE: // Imgproc.rectangle(out, p1, p2, new Scalar(255, 255, 255), 2); Core.rectangle(out, p1, p2, new Scalar(255, 255, 255), 2); board[i] = CheckersBoard.EMPTY; break; case COLOR_BLACK: // this is black // Imgproc.rectangle(out, p1, p2, new Scalar(0, 0, 0), 2); Core.rectangle( out, p1, p2, new Scalar(0, 0, 0), 2); // maybe add 8, 0 as line type and fractional bits board[i] = CheckersBoard.EMPTY; break; } } System.out.println("in color switch " + board[i]); count += 2; if (count == 8) { parity = ++parity % 2; // change odd or even count = 0; rowNum++; hsegment += 2; dx -= 10; dy += 10; vsegment += 3; ddy = 0; } } }
/** * Determines which pieces are kings * * @param in Mat image of board */ public void determineKings(Mat in) { int playSquares = 32; Mat dst = new Mat(in.rows(), in.cols(), in.type()); in.copyTo(dst); Imgproc.cvtColor(dst, dst, Imgproc.COLOR_BGR2GRAY); // change to single color Mat canny = new Mat(); Imgproc.Canny(dst, canny, 100, 200); // make image a canny image that is only edges; 2,4 // lower threshold values find more edges List<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Mat hierarchy = new Mat(); // holds nested contour information Imgproc.findContours( canny, contours, hierarchy, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); // Imgproc.RETR_LIST, TREE // draw contour image Mat mask = new Mat(); mask = Mat.zeros(dst.size(), dst.type()); Imgproc.drawContours( mask, contours, -1, new Scalar(255, 255, 255), 1, 8, hierarchy, 2, new Point()); Highgui.imwrite("contours.jpg", mask); ArrayList occupied = new ArrayList<Integer>(); for (int i = 0; i < playSquares; i++) { if (board[i] != 0) occupied.add(i); } for (int i = 0; i < contours.size(); i++) // assuming only contours are checker pieces { // determine if it should be a king // use Rect r = Imgproc.boundingRect then find height of it by r.height // Get bounding rect of contour Rect bound = Imgproc.boundingRect(contours.get(i)); if (bound.height > in.rows() / 8) { // board[(int) occupied.get(0)]++; // make it a king // occupied.remove(0); } } // or apply to each region of interest /* // keep track of starting row square int parity = 0; // 0 is even, 1 is odd, tied to row number int count = 0; // row square int rowNum = 0; // row number, starting at 0 int vsegment = in.rows() / 8; // only accounts 8 playable int hsegment = in.cols() / 12; // 8 playable, 2 capture, 2 extra int offset = hsegment * 2; // offset for playable board // For angle of camera int dx = 48; hsegment -= 8; // Go through all playable squares for (int i = 0; i < playSquares; i++) { // change offset depending on the row if (parity == 0) // playable squares start on immediate left offset = hsegment * 3 + dx; else // playable squares start on 2nd square from left offset = hsegment * 2 + dx; // find where roi should be Point p1 = new Point(offset + count * hsegment, rowNum * vsegment); // top left point of rectangle (x,y) Point p2 = new Point(offset + (count + 1) * hsegment, (rowNum + 1) * vsegment); // bottom right point of rectangle (x,y) // create rectangle that is board square Rect bound = new Rect(p1, p2); // frame only includes rectangle Mat roi = new Mat(in, bound); Imgproc.cvtColor(roi, roi, Imgproc.COLOR_BGR2GRAY); // change to single color Mat canny = new Mat(); Imgproc.Canny(roi, canny, 2, 4); // make image a canny image that is only edges; 2,4 // lower threshold values find more edges List<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Mat hierarchy = new Mat(); // holds nested contour information Imgproc.findContours(canny, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE); // Imgproc.RETR_LIST, TREE // Get bounding rect of contour Rect rect = Imgproc.boundingRect(contours.get(0)); if (rect.height > in.rows() / 8) { board[i]++; // make it a king } count += 2; if (count == 8) { parity = ++parity % 2; // change odd or even count = 0; rowNum++; hsegment += 1; dx -= 6; } }*/ }
@Override protected Bitmap processFrame(VideoCapture capture) { Time[] measureTime = new Time[9]; String[] compDescStrings = { "Total processFrame", "Grab a new frame", "MatToBitmap", "Publish cameraInfo", "Create ImageMsg", "Compress image", "Transfer to Stream", "Image.SetData", "Publish Image", "Total econds per frame" }; String[] rawDescStrings = { "Total processFrame", "Grab a new frame", "MatToBitmap", "Publish cameraInfo", "Create ImageMsg", "Pixel to buffer", "Transfer to Stream", "Image.SetData", "Publish Image", "Total seconds per frame" }; measureTime[0] = connectedNode.getCurrentTime(); switch (MainActivity.viewMode) { case MainActivity.VIEW_MODE_GRAY: // capture.retrieve(mGray, Highgui.CV_CAP_ANDROID_GREY_FRAME); capture.retrieve(mRgba, Highgui.CV_CAP_ANDROID_GREY_FRAME); // Imgproc.cvtColor(mGray, mRgba, Imgproc.COLOR_GRAY2RGBA, 4); break; case MainActivity.VIEW_MODE_RGBA: capture.retrieve(mRgba, Highgui.CV_CAP_ANDROID_COLOR_FRAME_RGBA); // Core.putText(mRgba, "OpenCV + Android", new Point(10, 100), 3, 2, new // Scalar(255, 0, 0, 255), 3); break; case MainActivity.VIEW_MODE_CANNY: capture.retrieve(mGray, Highgui.CV_CAP_ANDROID_GREY_FRAME); Imgproc.Canny(mGray, mIntermediateMat, 80, 100); Imgproc.cvtColor(mIntermediateMat, mRgba, Imgproc.COLOR_GRAY2BGRA, 4); break; } Time currentTime = connectedNode.getCurrentTime(); measureTime[1] = connectedNode.getCurrentTime(); if (bmp == null) bmp = Bitmap.createBitmap(mRgba.cols(), mRgba.rows(), Bitmap.Config.ARGB_8888); if (MainActivity.imageCompression == MainActivity.IMAGE_TRANSPORT_COMPRESSION_NONE && bb == null) { Log.i(TAG, "Buffer 1"); bb = ByteBuffer.allocate(bmp.getRowBytes() * bmp.getHeight()); Log.i(TAG, "Buffer 2"); bb.clear(); Log.i(TAG, "Buffer 3"); } try { Utils.matToBitmap(mRgba, bmp); measureTime[2] = connectedNode.getCurrentTime(); cameraInfo = cameraInfoPublisher.newMessage(); cameraInfo.getHeader().setFrameId("camera"); cameraInfo.getHeader().setStamp(currentTime); cameraInfo.setWidth(640); cameraInfo.setHeight(480); cameraInfoPublisher.publish(cameraInfo); measureTime[3] = connectedNode.getCurrentTime(); if (MainActivity.imageCompression >= MainActivity.IMAGE_TRANSPORT_COMPRESSION_PNG) { // Compressed image sensor_msgs.CompressedImage image = imagePublisher.newMessage(); if (MainActivity.imageCompression == MainActivity.IMAGE_TRANSPORT_COMPRESSION_PNG) image.setFormat("png"); else if (MainActivity.imageCompression == MainActivity.IMAGE_TRANSPORT_COMPRESSION_JPEG) image.setFormat("jpeg"); image.getHeader().setStamp(currentTime); image.getHeader().setFrameId("camera"); measureTime[4] = connectedNode.getCurrentTime(); ByteArrayOutputStream baos = new ByteArrayOutputStream(); if (MainActivity.imageCompression == MainActivity.IMAGE_TRANSPORT_COMPRESSION_PNG) bmp.compress(Bitmap.CompressFormat.PNG, 100, baos); else if (MainActivity.imageCompression == MainActivity.IMAGE_TRANSPORT_COMPRESSION_JPEG) bmp.compress(Bitmap.CompressFormat.JPEG, MainActivity.imageCompressionQuality, baos); measureTime[5] = connectedNode.getCurrentTime(); stream.buffer().writeBytes(baos.toByteArray()); measureTime[6] = connectedNode.getCurrentTime(); image.setData(stream.buffer().copy()); measureTime[7] = connectedNode.getCurrentTime(); stream.buffer().clear(); imagePublisher.publish(image); measureTime[8] = connectedNode.getCurrentTime(); } else { // Raw image Log.i(TAG, "Raw image 1"); sensor_msgs.Image rawImage = rawImagePublisher.newMessage(); rawImage.getHeader().setStamp(currentTime); rawImage.getHeader().setFrameId("camera"); rawImage.setEncoding("rgba8"); rawImage.setWidth(bmp.getWidth()); rawImage.setHeight(bmp.getHeight()); rawImage.setStep(640); measureTime[4] = connectedNode.getCurrentTime(); Log.i(TAG, "Raw image 2"); bmp.copyPixelsToBuffer(bb); measureTime[5] = connectedNode.getCurrentTime(); Log.i(TAG, "Raw image 3"); stream.buffer().writeBytes(bb.array()); bb.clear(); measureTime[6] = connectedNode.getCurrentTime(); Log.i(TAG, "Raw image 4"); rawImage.setData(stream.buffer().copy()); stream.buffer().clear(); measureTime[7] = connectedNode.getCurrentTime(); Log.i(TAG, "Raw image 5"); rawImagePublisher.publish(rawImage); measureTime[8] = connectedNode.getCurrentTime(); Log.i(TAG, "Raw image 6"); } newTime = connectedNode.getCurrentTime(); stats[9][counter] = (newTime.subtract(oldTime)).nsecs / 1000000.0; oldTime = newTime; for (int i = 1; i < 9; i++) { stats[i][counter] = (measureTime[i].subtract(measureTime[i - 1])).nsecs / 1000000.0; } stats[0][counter] = measureTime[8].subtract(measureTime[0]).nsecs / 1000000.0; counter++; if (counter == numSamples) { double[] sts = new double[10]; Arrays.fill(sts, 0.0); for (int i = 0; i < 10; i++) { for (int j = 0; j < numSamples; j++) sts[i] += stats[i][j]; sts[i] /= (double) numSamples; if (MainActivity.imageCompression >= MainActivity.IMAGE_TRANSPORT_COMPRESSION_PNG) Log.i(TAG, String.format("Mean time for %s:\t\t%4.2fms", compDescStrings[i], sts[i])); else Log.i(TAG, String.format("Mean time for %s:\t\t%4.2fms", rawDescStrings[i], sts[i])); } Log.i(TAG, "\n\n"); counter = 0; } return bmp; } catch (Exception e) { Log.e(TAG, "Frame conversion and publishing throws an exception: " + e.getMessage()); bmp.recycle(); return null; } }
public void run() { ArrayList<Geometry.Quad> squares; Mat image = new Mat(); Utils.bitmapToMat(source, image); Mat bwimage = new Mat(); cvtColor(image, bwimage, COLOR_RGB2GRAY); Mat blurred = new Mat(); medianBlur(image, blurred, 9); int width = blurred.width(); int height = blurred.height(); int depth = blurred.depth(); Mat gray0 = new Mat(width, height, depth); blurred.copyTo(gray0); squares = new ArrayList<Geometry.Quad>(); // find squares in every color plane of the image for (int c = 0; c < 3; c++) { Core.mixChannels( Arrays.asList(blurred), Arrays.asList(new Mat[] {gray0}), new MatOfInt(c, 0)); // try several threshold levels int thresholdLevel = 8; for (int l = 0; l < thresholdLevel; l++) { // use canny instead of 0 threshold level // canny helps catch squares with gradient shading Mat gray = new Mat(); if (l == 0) { Canny(gray0, gray, 10.0, 20.0, 3, false); Mat kernel = new Mat(11, 11, CvType.CV_8UC1, new Scalar(1)); dilate(gray, gray, kernel); } else { Mat thresh = new Mat(gray0.rows(), gray0.cols(), gray0.type()); threshold(gray0, thresh, ((double) l) / thresholdLevel * 255, 128, THRESH_BINARY_INV); cvtColor(thresh, gray, COLOR_BGR2GRAY); } // find contours and store them in a list List<MatOfPoint> contours = new ArrayList<MatOfPoint>(); findContours(gray, contours, new Mat(), RETR_LIST, CHAIN_APPROX_SIMPLE); // test contours for (MatOfPoint contour : contours) { // approximate contour with accuracy proportional to the contour perimeter MatOfPoint2f thisContour = new MatOfPoint2f(contour.toArray()); double arclength = 0.02 * arcLength(thisContour, true); MatOfPoint2f approx = new MatOfPoint2f(); approxPolyDP(thisContour, approx, arclength, true); double area = contourArea(approx); boolean isConvex = isContourConvex(new MatOfPoint(approx.toArray())); if (approx.rows() == 4 && Math.abs(area) > SQUARE_SIZE && isConvex) { double maxCosine = 0; Point[] approxArray = approx.toArray(); for (int j = 2; j < 5; j++) { double cosine = Math.abs(angle(approxArray[j % 4], approxArray[j - 2], approxArray[j - 1])); maxCosine = Math.max(maxCosine, cosine); } if (maxCosine > THRESHOLD_COS) { squares.add(new Geometry.Quad(approxArray)); Log.d(TAG, "area = " + area); } } } } } result = new Bundle(); result.putParcelableArrayList("squares", squares); Log.d(TAG, "result created"); finish(); }
public Mat onCameraFrame(Mat inputFrame) { inputFrame.copyTo(mRgba); switch (ImageManipulationsActivity.viewMode) { case ImageManipulationsActivity.VIEW_MODE_RGBA: break; case ImageManipulationsActivity.VIEW_MODE_HIST: if ((mSizeRgba == null) || (mRgba.cols() != mSizeRgba.width) || (mRgba.height() != mSizeRgba.height)) CreateAuxiliaryMats(); int thikness = (int) (mSizeRgba.width / (mHistSizeNum + 10) / 5); if (thikness > 5) thikness = 5; int offset = (int) ((mSizeRgba.width - (5 * mHistSizeNum + 4 * 10) * thikness) / 2); // RGB for (int c = 0; c < 3; c++) { Imgproc.calcHist(Arrays.asList(mRgba), mChannels[c], mMat0, mHist, mHistSize, mRanges); Core.normalize(mHist, mHist, mSizeRgba.height / 2, 0, Core.NORM_INF); mHist.get(0, 0, mBuff); for (int h = 0; h < mHistSizeNum; h++) { mP1.x = mP2.x = offset + (c * (mHistSizeNum + 10) + h) * thikness; mP1.y = mSizeRgba.height - 1; mP2.y = mP1.y - 2 - (int) mBuff[h]; Core.line(mRgba, mP1, mP2, mColorsRGB[c], thikness); } } // Value and Hue Imgproc.cvtColor(mRgba, mIntermediateMat, Imgproc.COLOR_RGB2HSV_FULL); // Value Imgproc.calcHist( Arrays.asList(mIntermediateMat), mChannels[2], mMat0, mHist, mHistSize, mRanges); Core.normalize(mHist, mHist, mSizeRgba.height / 2, 0, Core.NORM_INF); mHist.get(0, 0, mBuff); for (int h = 0; h < mHistSizeNum; h++) { mP1.x = mP2.x = offset + (3 * (mHistSizeNum + 10) + h) * thikness; mP1.y = mSizeRgba.height - 1; mP2.y = mP1.y - 2 - (int) mBuff[h]; Core.line(mRgba, mP1, mP2, mWhilte, thikness); } // Hue Imgproc.calcHist( Arrays.asList(mIntermediateMat), mChannels[0], mMat0, mHist, mHistSize, mRanges); Core.normalize(mHist, mHist, mSizeRgba.height / 2, 0, Core.NORM_INF); mHist.get(0, 0, mBuff); for (int h = 0; h < mHistSizeNum; h++) { mP1.x = mP2.x = offset + (4 * (mHistSizeNum + 10) + h) * thikness; mP1.y = mSizeRgba.height - 1; mP2.y = mP1.y - 2 - (int) mBuff[h]; Core.line(mRgba, mP1, mP2, mColorsHue[h], thikness); } break; case ImageManipulationsActivity.VIEW_MODE_CANNY: if ((mRgbaInnerWindow == null) || (mGrayInnerWindow == null) || (mRgba.cols() != mSizeRgba.width) || (mRgba.height() != mSizeRgba.height)) CreateAuxiliaryMats(); Imgproc.Canny(mRgbaInnerWindow, mIntermediateMat, 80, 90); Imgproc.cvtColor(mIntermediateMat, mRgbaInnerWindow, Imgproc.COLOR_GRAY2BGRA, 4); break; case ImageManipulationsActivity.VIEW_MODE_SOBEL: Imgproc.cvtColor(mRgba, mGray, Imgproc.COLOR_RGBA2GRAY); if ((mRgbaInnerWindow == null) || (mGrayInnerWindow == null) || (mRgba.cols() != mSizeRgba.width) || (mRgba.height() != mSizeRgba.height)) CreateAuxiliaryMats(); Imgproc.Sobel(mGrayInnerWindow, mIntermediateMat, CvType.CV_8U, 1, 1); Core.convertScaleAbs(mIntermediateMat, mIntermediateMat, 10, 0); Imgproc.cvtColor(mIntermediateMat, mRgbaInnerWindow, Imgproc.COLOR_GRAY2BGRA, 4); break; case ImageManipulationsActivity.VIEW_MODE_SEPIA: Core.transform(mRgba, mRgba, mSepiaKernel); break; case ImageManipulationsActivity.VIEW_MODE_ZOOM: if ((mZoomCorner == null) || (mZoomWindow == null) || (mRgba.cols() != mSizeRgba.width) || (mRgba.height() != mSizeRgba.height)) CreateAuxiliaryMats(); Imgproc.resize(mZoomWindow, mZoomCorner, mZoomCorner.size()); Size wsize = mZoomWindow.size(); Core.rectangle( mZoomWindow, new Point(1, 1), new Point(wsize.width - 2, wsize.height - 2), new Scalar(255, 0, 0, 255), 2); break; case ImageManipulationsActivity.VIEW_MODE_PIXELIZE: if ((mRgbaInnerWindow == null) || (mRgba.cols() != mSizeRgba.width) || (mRgba.height() != mSizeRgba.height)) CreateAuxiliaryMats(); Imgproc.resize(mRgbaInnerWindow, mIntermediateMat, mSize0, 0.1, 0.1, Imgproc.INTER_NEAREST); Imgproc.resize( mIntermediateMat, mRgbaInnerWindow, mSizeRgbaInner, 0., 0., Imgproc.INTER_NEAREST); break; case ImageManipulationsActivity.VIEW_MODE_POSTERIZE: if ((mRgbaInnerWindow == null) || (mRgba.cols() != mSizeRgba.width) || (mRgba.height() != mSizeRgba.height)) CreateAuxiliaryMats(); /* Imgproc.cvtColor(mRgbaInnerWindow, mIntermediateMat, Imgproc.COLOR_RGBA2RGB); Imgproc.pyrMeanShiftFiltering(mIntermediateMat, mIntermediateMat, 5, 50); Imgproc.cvtColor(mIntermediateMat, mRgbaInnerWindow, Imgproc.COLOR_RGB2RGBA); */ Imgproc.Canny(mRgbaInnerWindow, mIntermediateMat, 80, 90); mRgbaInnerWindow.setTo(new Scalar(0, 0, 0, 255), mIntermediateMat); Core.convertScaleAbs(mRgbaInnerWindow, mIntermediateMat, 1. / 16, 0); Core.convertScaleAbs(mIntermediateMat, mRgbaInnerWindow, 16, 0); break; } return mRgba; }
public static void getSquare(Mat imgSource) { Mat sourceImage = imgSource.clone(); Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BGR2GRAY); // convert the image to black and white does (8 bit) Imgproc.Canny(imgSource, imgSource, 50, 50); // apply gaussian blur to smoothen lines of dots Imgproc.GaussianBlur(imgSource, imgSource, new org.opencv.core.Size(5, 5), 5); // find the contours List<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Imgproc.findContours( imgSource, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); double maxArea = -1; int maxAreaIdx = -1; // Log.d("size",Integer.toString(contours.size())); MatOfPoint temp_contour = contours.get(0); // the largest is at the // index 0 for starting // point MatOfPoint2f approxCurve = new MatOfPoint2f(); MatOfPoint largest_contour = contours.get(0); // largest_contour.ge List<MatOfPoint> largest_contours = new ArrayList<MatOfPoint>(); // Imgproc.drawContours(imgSource,contours, -1, new Scalar(0, 255, 0), // 1); for (int idx = 0; idx < contours.size(); idx++) { temp_contour = contours.get(idx); double contourarea = Imgproc.contourArea(temp_contour); // compare this contour to the previous largest contour found if (contourarea > maxArea) { // check if this contour is a square MatOfPoint2f new_mat = new MatOfPoint2f(temp_contour.toArray()); int contourSize = (int) temp_contour.total(); MatOfPoint2f approxCurve_temp = new MatOfPoint2f(); Imgproc.approxPolyDP(new_mat, approxCurve_temp, contourSize * 0.05, true); if (approxCurve_temp.total() == 4) { maxArea = contourarea; maxAreaIdx = idx; approxCurve = approxCurve_temp; largest_contour = temp_contour; } } } Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BayerBG2RGB); double[] temp_double; temp_double = approxCurve.get(0, 0); Point p1 = new Point(temp_double[0], temp_double[1]); // Core.circle(imgSource,p1,55,new Scalar(0,0,255)); // Imgproc.warpAffine(sourceImage, dummy, rotImage,sourceImage.size()); temp_double = approxCurve.get(1, 0); Point p2 = new Point(temp_double[0], temp_double[1]); // Core.circle(imgSource,p2,150,new Scalar(255,255,255)); temp_double = approxCurve.get(2, 0); Point p3 = new Point(temp_double[0], temp_double[1]); // Core.circle(imgSource,p3,200,new Scalar(255,0,0)); temp_double = approxCurve.get(3, 0); Point p4 = new Point(temp_double[0], temp_double[1]); // Core.circle(imgSource,p4,100,new Scalar(0,0,255)); List<Point> source = getCorners(p1, p2, p3, p4); for (Point p : source) { // System.out.println(p); } Mat startM = Converters.vector_Point2f_to_Mat(source); // Imgproc.cvtColor(sourceImage, sourceImage, Imgproc.COLOR_BGR2GRAY); Mat result = warp(sourceImage, startM, 5); // result = warp(result,result,1); // Imgproc.cvtColor(result, result, Imgproc.COLOR_BGR2GRAY); Highgui.imwrite(output, result); // System.out.println("Done"); // return result; }