protected void paintComponent(Graphics g) { super.paintComponent(g); Graphics2D g2 = (Graphics2D) g; g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON); int w = getWidth(); int h = getHeight(); double theta, x, y; g2.setPaint(Color.blue); double x1 = w * 3 / 24, y1 = h * 3 / 32, x2 = w * 11 / 24, y2 = y1; g2.draw(new Line2D.Double(x1, y1, x2, y2)); // draw this arrow head at point x2, y2 and measure // angle theta relative to same point, ie, y2 - and x2 - theta = Math.atan2(y2 - y1, x2 - x1); drawArrow(g2, theta, x2, y2); x1 = w * 3 / 8; y1 = h * 13 / 15; x2 = w * 2 / 3; y2 = y1; g2.draw(new Line2D.Double(x1, y1, x2, y2)); theta = Math.atan2(y1 - y2, x1 - x2); drawArrow(g2, theta, x1, y1); g2.setPaint(Color.red); x1 = w * 3 / 24; y1 = h * 4 / 32; x2 = x1; y2 = h * 18 / 32; g2.draw(new Line2D.Double(x1, y1, x2, y2)); theta = Math.atan2(y2 - y1, x2 - x1); drawArrow(g2, theta, x2, y2); g2.setPaint(Color.orange); x1 = w * 5 / 32; y1 = h * 27 / 32; x2 = w * 27 / 32; y2 = h * 5 / 32; g2.draw(new Line2D.Double(x1, y1, x2, y2)); theta = Math.atan2(y2 - y1, x2 - x1); drawArrow(g2, theta, x2, y2); g2.setPaint(Color.green.darker()); x1 = w / 2; y1 = h / 2; x2 = w * 27 / 32; y2 = h * 27 / 32; g2.draw(new Line2D.Double(x1, y1, x2, y2)); theta = Math.atan2(y2 - y1, x2 - x1); drawArrow(g2, theta, x2, y2); }
// From: http://forum.java.sun.com/thread.jspa?threadID=378460&tstart=135 void drawArrow( Graphics2D g2d, int xCenter, int yCenter, int x, int y, float stroke, BasicStroke drawStroke) { double aDir = Math.atan2(xCenter - x, yCenter - y); // Line can be dashed. g2d.setStroke(drawStroke); g2d.drawLine(x, y, xCenter, yCenter); // make the arrow head solid even if dash pattern has been specified g2d.setStroke(lineStroke); Polygon tmpPoly = new Polygon(); int i1 = 12 + (int) (stroke * 2); // make the arrow head the same size regardless of the length length int i2 = 6 + (int) stroke; tmpPoly.addPoint(x, y); tmpPoly.addPoint(x + xCor(i1, aDir + .5), y + yCor(i1, aDir + .5)); tmpPoly.addPoint(x + xCor(i2, aDir), y + yCor(i2, aDir)); tmpPoly.addPoint(x + xCor(i1, aDir - .5), y + yCor(i1, aDir - .5)); tmpPoly.addPoint(x, y); // arrow tip g2d.drawPolygon(tmpPoly); // Remove this line to leave arrow head unpainted: g2d.fillPolygon(tmpPoly); }
private void generateLookupTables() { mySat = new float[myWidth * myHeight]; myHues = new float[myWidth * myHeight]; myAlphas = new int[myWidth * myHeight]; float radius = getRadius(); // blend is used to create a linear alpha gradient of two extra pixels float blend = (radius + 2f) / radius - 1f; // Center of the color wheel circle int cx = myWidth / 2; int cy = myHeight / 2; for (int x = 0; x < myWidth; x++) { int kx = x - cx; // Kartesian coordinates of x int squarekx = kx * kx; // Square of kartesian x for (int y = 0; y < myHeight; y++) { int ky = cy - y; // Kartesian coordinates of y int index = x + y * myWidth; mySat[index] = (float) Math.sqrt(squarekx + ky * ky) / radius; if (mySat[index] <= 1f) { myAlphas[index] = 0xff000000; } else { myAlphas[index] = (int) ((blend - Math.min(blend, mySat[index] - 1f)) * 255 / blend) << 24; mySat[index] = 1f; } if (myAlphas[index] != 0) { myHues[index] = (float) (Math.atan2(ky, kx) / Math.PI / 2d); } } } }
public void mousePressed(MouseEvent e) { requestFocus(); Point p = e.getPoint(); int size = Math.min( MAX_SIZE, Math.min( getWidth() - imagePadding.left - imagePadding.right, getHeight() - imagePadding.top - imagePadding.bottom)); p.translate(-(getWidth() / 2 - size / 2), -(getHeight() / 2 - size / 2)); if (mode == ColorPicker.BRI || mode == ColorPicker.SAT) { // the two circular views: double radius = ((double) size) / 2.0; double x = p.getX() - size / 2.0; double y = p.getY() - size / 2.0; double r = Math.sqrt(x * x + y * y) / radius; double theta = Math.atan2(y, x) / (Math.PI * 2.0); if (r > 1) r = 1; if (mode == ColorPicker.BRI) { setHSB((float) (theta + .25f), (float) (r), bri); } else { setHSB((float) (theta + .25f), sat, (float) (r)); } } else if (mode == ColorPicker.HUE) { float s = ((float) p.x) / ((float) size); float b = ((float) p.y) / ((float) size); if (s < 0) s = 0; if (s > 1) s = 1; if (b < 0) b = 0; if (b > 1) b = 1; setHSB(hue, s, b); } else { int x2 = p.x * 255 / size; int y2 = p.y * 255 / size; if (x2 < 0) x2 = 0; if (x2 > 255) x2 = 255; if (y2 < 0) y2 = 0; if (y2 > 255) y2 = 255; if (mode == ColorPicker.RED) { setRGB(red, x2, y2); } else if (mode == ColorPicker.GREEN) { setRGB(x2, green, y2); } else { setRGB(x2, y2, blue); } } }
protected void recalcOutFreq() { if (inRate == 0f) return; double omegaIn, omegaOut, warp; ParamField ggOutFreq; omegaIn = pr.para[PR_INFREQ].val / inRate * Constants.PI2; warp = Math.max(-0.98, Math.min(0.98, pr.para[PR_WARP].val / 100)); // DAFx2000 'b' omegaOut = omegaIn + 2 * Math.atan2(warp * Math.sin(omegaIn), 1.0 - warp * Math.cos(omegaIn)); ggOutFreq = (ParamField) gui.getItemObj(GG_OUTFREQ); if (ggOutFreq != null) { ggOutFreq.setParam(new Param(omegaOut / Constants.PI2 * inRate, Param.ABS_HZ)); } }
public void move() { objtimer++; // move if (xmot.random && objtimer % (int) (35 * xmot.randomchg) == 0) { xspeed = xmot.speed * random(-1, 1, 2); } if (ymot.random && objtimer % (int) (35 * ymot.randomchg) == 0) { yspeed = ymot.speed * random(-1, 1, 2); } if (player != null) { double playerdist = Math.sqrt((player.x - x) * (player.x - x) + (player.y - y) * (player.y - y)) * 100.0 / (pfWidth()); if (xmot.toplayer && playerdist > xmot.toplayermin && playerdist < xmot.toplayermax) { xspeed = 0; x += xmot.speed * (player.x > x ? 1 : -1); } else if (xmot.frplayer && playerdist > xmot.frplayermin && playerdist < xmot.frplayermax) { xspeed = 0; x += xmot.speed * (player.x < x ? 1 : -1); } if (ymot.toplayer && playerdist > ymot.toplayermin && playerdist < ymot.toplayermax) { yspeed = 0; y += ymot.speed * (player.y > y ? 1 : -1); } else if (ymot.frplayer && playerdist > ymot.frplayermin && playerdist < ymot.frplayermax) { yspeed = 0; y += ymot.speed * (player.y < y ? 1 : -1); } } // react to background int bounces = 0; if (bouncesides.equals("any")) { bounces |= 15; } else if (bouncesides.equals("top")) { bounces |= 1; } else if (bouncesides.equals("bottom")) { bounces |= 2; } else if (bouncesides.equals("topbottom")) { bounces |= 3; } else if (bouncesides.equals("left")) { bounces |= 4; } else if (bouncesides.equals("right")) { bounces |= 8; } else if (bouncesides.equals("leftright")) { bounces |= 12; } if ((bounces & 1) != 0 && y < 0) { y = 0; if (yspeed < 0) yspeed = -yspeed; } if ((bounces & 2) != 0 && y > pfHeight() - 16) { y = pfHeight() - 16; if (yspeed > 0) yspeed = -yspeed; } if ((bounces & 4) != 0 && x < 0) { x = 0; if (xspeed < 0) xspeed = -xspeed; } if ((bounces & 8) != 0 && x > pfWidth() - 16) { x = pfWidth() - 16; if (xspeed > 0) xspeed = -xspeed; } // shoot if (shoot && shootfreq > 0.0 && objtimer % (int) (shootfreq * 35) == 0) { if (shootdir.equals("left")) { new AgentBullet(x, y, bullettype, sprite, diebgtype | blockbgtype, -shootspeed, 0); } else if (shootdir.equals("right")) { new AgentBullet(x, y, bullettype, sprite, diebgtype | blockbgtype, shootspeed, 0); } else if (shootdir.equals("up")) { new AgentBullet(x, y, bullettype, sprite, diebgtype | blockbgtype, 0, -shootspeed); } else if (shootdir.equals("down")) { new AgentBullet(x, y, bullettype, sprite, diebgtype | blockbgtype, 0, shootspeed); } else if (shootdir.equals("player") && player != null) { double angle = Math.atan2(player.x - x, player.y - y); new AgentBullet( x, y, bullettype, sprite, diebgtype | blockbgtype, shootspeed * Math.sin(angle), shootspeed * Math.cos(angle)); } } }
/** Regenerates the image. */ private synchronized void regenerateImage() { int size = Math.min( MAX_SIZE, Math.min( getWidth() - imagePadding.left - imagePadding.right, getHeight() - imagePadding.top - imagePadding.bottom)); if (mode == ColorPicker.BRI || mode == ColorPicker.SAT) { float bri2 = this.bri; float sat2 = this.sat; float radius = ((float) size) / 2f; float hue2; float k = 1.2f; // the number of pixels to antialias for (int y = 0; y < size; y++) { float y2 = (y - size / 2f); for (int x = 0; x < size; x++) { float x2 = (x - size / 2f); double theta = Math.atan2(y2, x2) - 3 * Math.PI / 2.0; if (theta < 0) theta += 2 * Math.PI; double r = Math.sqrt(x2 * x2 + y2 * y2); if (r <= radius) { if (mode == ColorPicker.BRI) { hue2 = (float) (theta / (2 * Math.PI)); sat2 = (float) (r / radius); } else { // SAT hue2 = (float) (theta / (2 * Math.PI)); bri2 = (float) (r / radius); } row[x] = Color.HSBtoRGB(hue2, sat2, bri2); if (r > radius - k) { int alpha = (int) (255 - 255 * (r - radius + k) / k); if (alpha < 0) alpha = 0; if (alpha > 255) alpha = 255; row[x] = row[x] & 0xffffff + (alpha << 24); } } else { row[x] = 0x00000000; } } image.getRaster().setDataElements(0, y, size, 1, row); } } else if (mode == ColorPicker.HUE) { float hue2 = this.hue; for (int y = 0; y < size; y++) { float y2 = ((float) y) / ((float) size); for (int x = 0; x < size; x++) { float x2 = ((float) x) / ((float) size); row[x] = Color.HSBtoRGB(hue2, x2, y2); } image.getRaster().setDataElements(0, y, image.getWidth(), 1, row); } } else { // mode is RED, GREEN, or BLUE int red2 = red; int green2 = green; int blue2 = blue; for (int y = 0; y < size; y++) { float y2 = ((float) y) / ((float) size); for (int x = 0; x < size; x++) { float x2 = ((float) x) / ((float) size); if (mode == ColorPicker.RED) { green2 = (int) (x2 * 255 + .49); blue2 = (int) (y2 * 255 + .49); } else if (mode == ColorPicker.GREEN) { red2 = (int) (x2 * 255 + .49); blue2 = (int) (y2 * 255 + .49); } else { red2 = (int) (x2 * 255 + .49); green2 = (int) (y2 * 255 + .49); } row[x] = 0xFF000000 + (red2 << 16) + (green2 << 8) + blue2; } image.getRaster().setDataElements(0, y, size, 1, row); } } repaint(); }
/** Translation durchfuehren */ public void process() { int i, j, k; int ch, len; float f1; double d1, d2, d3, d4, d5; long progOff, progLen, lo; // io AudioFile reInF = null; AudioFile imInF = null; AudioFile reOutF = null; AudioFile imOutF = null; AudioFileDescr reInStream = null; AudioFileDescr imInStream = null; AudioFileDescr reOutStream = null; AudioFileDescr imOutStream = null; FloatFile reFloatF[] = null; FloatFile imFloatF[] = null; File reTempFile[] = null; File imTempFile[] = null; int outChanNum; float[][] reInBuf; // [ch][i] float[][] imInBuf; // [ch][i] float[][] reOutBuf = null; // [ch][i] float[][] imOutBuf = null; // [ch][i] float[] convBuf1, convBuf2; boolean complex; PathField ggOutput; // Synthesize Param ampRef = new Param(1.0, Param.ABS_AMP); // transform-Referenz float gain; // gain abs amp float dryGain, wetGain; float inGain; float maxAmp = 0.0f; Param peakGain; int inLength, inOff; int pre; int post; int length; int framesRead, framesWritten, outLength; boolean polarIn, polarOut; // phase unwrapping double[] phi; int[] wrap; double[] carry; Param lenRef; topLevel: try { complex = pr.bool[PR_HASIMINPUT] || pr.bool[PR_HASIMOUTPUT]; polarIn = pr.intg[PR_OPERATOR] == OP_POLAR2RECT; polarOut = pr.intg[PR_OPERATOR] == OP_RECT2POLAR; if ((polarIn || polarOut) && !complex) throw new IOException(ERR_NOTCOMPLEX); // ---- open input ---- reInF = AudioFile.openAsRead(new File(pr.text[PR_REINPUTFILE])); reInStream = reInF.getDescr(); inLength = (int) reInStream.length; reInBuf = new float[reInStream.channels][8192]; imInBuf = new float[reInStream.channels][8192]; if (pr.bool[PR_HASIMINPUT]) { imInF = AudioFile.openAsRead(new File(pr.text[PR_IMINPUTFILE])); imInStream = imInF.getDescr(); if (imInStream.channels != reInStream.channels) throw new IOException(ERR_COMPLEX); inLength = (int) Math.min(inLength, imInStream.length); } lenRef = new Param(AudioFileDescr.samplesToMillis(reInStream, inLength), Param.ABS_MS); d1 = AudioFileDescr.millisToSamples( reInStream, (Param.transform(pr.para[PR_OFFSET], Param.ABS_MS, lenRef, null).value)); j = (int) (d1 >= 0.0 ? (d1 + 0.5) : (d1 - 0.5)); // correct rounding for negative values! length = (int) (AudioFileDescr.millisToSamples( reInStream, (Param.transform(pr.para[PR_LENGTH], Param.ABS_MS, lenRef, null)).value) + 0.5); // System.err.println( "offset = "+j ); if (j >= 0) { inOff = Math.min(j, inLength); if (!pr.bool[PR_REVERSE]) { reInF.seekFrame(inOff); if (pr.bool[PR_HASIMINPUT]) { imInF.seekFrame(inOff); } } inLength -= inOff; pre = 0; } else { inOff = 0; pre = Math.min(-j, length); } inLength = Math.min(inLength, length - pre); post = length - pre - inLength; if (pr.bool[PR_REVERSE]) { i = pre; pre = post; post = i; inOff += inLength; } // .... check running .... if (!threadRunning) break topLevel; // for( op = 0; op < 2; op++ ) { // System.out.println( op +": pre "+pre[op]+" / len "+inLength[op]+" / post "+post[op] ); // } // System.out.println( "tot "+length[0]); outLength = length; outChanNum = reInStream.channels; // ---- open output ---- ggOutput = (PathField) gui.getItemObj(GG_REOUTPUTFILE); if (ggOutput == null) throw new IOException(ERR_MISSINGPROP); reOutStream = new AudioFileDescr(reInStream); ggOutput.fillStream(reOutStream); reOutStream.channels = outChanNum; // well, more sophisticated code would // move and truncate the markers... if ((pre == 0) /* && (post == 0) */) { reInF.readMarkers(); reOutStream.setProperty( AudioFileDescr.KEY_MARKERS, reInStream.getProperty(AudioFileDescr.KEY_MARKERS)); } reOutF = AudioFile.openAsWrite(reOutStream); reOutBuf = new float[outChanNum][8192]; imOutBuf = new float[outChanNum][8192]; if (pr.bool[PR_HASIMOUTPUT]) { imOutStream = new AudioFileDescr(reInStream); ggOutput.fillStream(imOutStream); imOutStream.channels = outChanNum; imOutStream.file = new File(pr.text[PR_IMOUTPUTFILE]); imOutF = AudioFile.openAsWrite(imOutStream); } // .... check running .... if (!threadRunning) break topLevel; // ---- Further inits ---- phi = new double[outChanNum]; wrap = new int[outChanNum]; carry = new double[outChanNum]; for (ch = 0; ch < outChanNum; ch++) { phi[ch] = 0.0; wrap[ch] = 0; carry[ch] = Double.NEGATIVE_INFINITY; } progOff = 0; // read, transform, write progLen = (long) outLength * 3; wetGain = (float) (Param.transform(pr.para[PR_WETMIX], Param.ABS_AMP, ampRef, null)).value; dryGain = (float) (Param.transform(pr.para[PR_DRYMIX], Param.ABS_AMP, ampRef, null)).value; if (pr.bool[PR_DRYINVERT]) { dryGain = -dryGain; } inGain = (float) (Param.transform(pr.para[PR_INPUTGAIN], Param.ABS_AMP, ampRef, null)).value; if (pr.bool[PR_INVERT]) { inGain = -inGain; } // normalization requires temp files if (pr.intg[PR_GAINTYPE] == GAIN_UNITY) { reTempFile = new File[outChanNum]; reFloatF = new FloatFile[outChanNum]; for (ch = 0; ch < outChanNum; ch++) { // first zero them because an exception might be thrown reTempFile[ch] = null; reFloatF[ch] = null; } for (ch = 0; ch < outChanNum; ch++) { reTempFile[ch] = IOUtil.createTempFile(); reFloatF[ch] = new FloatFile(reTempFile[ch], GenericFile.MODE_OUTPUT); } if (pr.bool[PR_HASIMOUTPUT]) { imTempFile = new File[outChanNum]; imFloatF = new FloatFile[outChanNum]; for (ch = 0; ch < outChanNum; ch++) { // first zero them because an exception might be thrown imTempFile[ch] = null; imFloatF[ch] = null; } for (ch = 0; ch < outChanNum; ch++) { imTempFile[ch] = IOUtil.createTempFile(); imFloatF[ch] = new FloatFile(imTempFile[ch], GenericFile.MODE_OUTPUT); } } progLen += outLength; } else { gain = (float) (Param.transform(pr.para[PR_GAIN], Param.ABS_AMP, ampRef, null)).value; wetGain *= gain; dryGain *= gain; } // .... check running .... if (!threadRunning) break topLevel; // ----==================== the real stuff ====================---- framesRead = 0; framesWritten = 0; while (threadRunning && (framesWritten < outLength)) { // ---- choose chunk len ---- len = Math.min(8192, outLength - framesWritten); if (pre > 0) { len = Math.min(len, pre); } else if (inLength > 0) { len = Math.min(len, inLength); } else { len = Math.min(len, post); } // ---- read input chunks ---- if (pre > 0) { Util.clear(reInBuf); if (complex) { Util.clear(imInBuf); } pre -= len; } else if (inLength > 0) { if (pr.bool[PR_REVERSE]) { // ---- read reversed ---- reInF.seekFrame(inOff - framesRead - len); reInF.readFrames(reInBuf, 0, len); for (ch = 0; ch < reInStream.channels; ch++) { convBuf1 = reInBuf[ch]; for (i = 0, j = len - 1; i < j; i++, j--) { f1 = convBuf1[j]; convBuf1[j] = convBuf1[i]; convBuf1[i] = f1; } } if (pr.bool[PR_HASIMINPUT]) { imInF.seekFrame(inOff - framesRead - len); imInF.readFrames(imInBuf, 0, len); for (ch = 0; ch < imInStream.channels; ch++) { convBuf1 = imInBuf[ch]; for (i = 0, j = len - 1; i < j; i++, j--) { f1 = convBuf1[j]; convBuf1[j] = convBuf1[i]; convBuf1[i] = f1; } } } else if (complex) { Util.clear(imInBuf); } } else { // ---- read normal ---- reInF.readFrames(reInBuf, 0, len); if (pr.bool[PR_HASIMINPUT]) { imInF.readFrames(imInBuf, 0, len); } else if (complex) { Util.clear(imInBuf); } } inLength -= len; framesRead += len; } else { Util.clear(reInBuf); if (complex) { Util.clear(imInBuf); } post -= len; } progOff += len; // .... progress .... setProgression((float) progOff / (float) progLen); // .... check running .... if (!threadRunning) break topLevel; // ---- save dry signal ---- for (ch = 0; ch < outChanNum; ch++) { convBuf1 = reInBuf[ch]; convBuf2 = reOutBuf[ch]; for (i = 0; i < len; i++) { convBuf2[i] = convBuf1[i] * dryGain; } if (complex) { convBuf1 = imInBuf[ch]; convBuf2 = imOutBuf[ch]; for (i = 0; i < len; i++) { convBuf2[i] = convBuf1[i] * dryGain; } } } // ---- rectify + apply input gain ---- for (ch = 0; ch < reInStream.channels; ch++) { convBuf1 = reInBuf[ch]; convBuf2 = imInBuf[ch]; // ---- rectify ---- if (pr.bool[PR_RECTIFY]) { if (complex) { if (polarIn) { for (i = 0; i < len; i++) { convBuf2[i] = 0.0f; } } else { for (i = 0; i < len; i++) { d1 = convBuf1[i]; d2 = convBuf2[i]; convBuf1[i] = (float) Math.sqrt(d1 * d1 + d2 * d2); convBuf2[i] = 0.0f; } } } else { for (i = 0; i < len; i++) { convBuf1[i] = Math.abs(convBuf1[i]); } } } // ---- apply input gain ---- Util.mult(convBuf1, 0, len, inGain); if (complex & !polarIn) { Util.mult(convBuf2, 0, len, inGain); } } // ---- heart of the dragon ---- for (ch = 0; ch < outChanNum; ch++) { convBuf1 = reInBuf[ch]; convBuf2 = imInBuf[ch]; switch (pr.intg[PR_OPERATOR]) { case OP_NONE: // ================ None ================ for (i = 0; i < len; i++) { reOutBuf[ch][i] += wetGain * convBuf1[i]; } if (complex) { for (i = 0; i < len; i++) { imOutBuf[ch][i] += wetGain * convBuf2[i]; } } break; case OP_SIN: // ================ Cosinus ================ if (complex) { for (i = 0; i < len; i++) { reOutBuf[ch][i] += wetGain * (float) Math.sin(convBuf1[i] * Math.PI); imOutBuf[ch][i] += wetGain * (float) Math.sin(convBuf2[i] * Math.PI); } } else { for (i = 0; i < len; i++) { reOutBuf[ch][i] += wetGain * (float) Math.sin(convBuf1[i] * Math.PI); } } break; case OP_SQR: // ================ Square ================ if (complex) { for (i = 0; i < len; i++) { reOutBuf[ch][i] += wetGain * (convBuf1[i] * convBuf1[i] - convBuf2[i] * convBuf2[i]); imOutBuf[ch][i] -= wetGain * (convBuf1[i] * convBuf2[i] * 2); } } else { for (i = 0; i < len; i++) { reOutBuf[ch][i] += wetGain * (convBuf1[i] * convBuf1[i]); } } break; case OP_SQRT: // ================ Square root ================ if (complex) { d3 = phi[ch]; k = wrap[ch]; d4 = k * Constants.PI2; for (i = 0; i < len; i++) { d1 = wetGain * Math.pow(convBuf1[i] * convBuf1[i] + convBuf2[i] * convBuf2[i], 0.25); d2 = Math.atan2(convBuf2[i], convBuf1[i]); if (d2 - d3 > Math.PI) { k--; d4 = k * Constants.PI2; } else if (d3 - d2 > Math.PI) { k++; d4 = k * Constants.PI2; } d2 += d4; d3 = d2; d2 /= 2; reOutBuf[ch][i] += (float) (d1 * Math.cos(d2)); imOutBuf[ch][i] += (float) (d1 * Math.sin(d2)); } phi[ch] = d3; wrap[ch] = k; } else { for (i = 0; i < len; i++) { f1 = convBuf1[i]; if (f1 > 0) { reOutBuf[ch][i] += wetGain * (float) Math.sqrt(f1); } // else undefiniert } } break; case OP_RECT2POLARW: // ================ Rect->Polar (wrapped) ================ for (i = 0; i < len; i++) { d1 = wetGain * Math.sqrt(convBuf1[i] * convBuf1[i] + convBuf2[i] * convBuf2[i]); d2 = Math.atan2(convBuf2[i], convBuf1[i]); reOutBuf[ch][i] += (float) d1; imOutBuf[ch][i] += (float) d2; } break; case OP_RECT2POLAR: // ================ Rect->Polar ================ d3 = phi[ch]; k = wrap[ch]; d4 = k * Constants.PI2; for (i = 0; i < len; i++) { d1 = wetGain * Math.sqrt(convBuf1[i] * convBuf1[i] + convBuf2[i] * convBuf2[i]); d2 = Math.atan2(convBuf2[i], convBuf1[i]); if (d2 - d3 > Math.PI) { k--; d4 = k * Constants.PI2; } else if (d3 - d2 > Math.PI) { k++; d4 = k * Constants.PI2; } d2 += d4; reOutBuf[ch][i] += (float) d1; imOutBuf[ch][i] += (float) d2; d3 = d2; } phi[ch] = d3; wrap[ch] = k; break; case OP_POLAR2RECT: // ================ Polar->Rect ================ for (i = 0; i < len; i++) { f1 = wetGain * convBuf1[i]; reOutBuf[ch][i] += f1 * (float) Math.cos(convBuf2[i]); imOutBuf[ch][i] += f1 * (float) Math.sin(convBuf2[i]); } break; case OP_LOG: // ================ Log ================ if (complex) { d3 = phi[ch]; k = wrap[ch]; d4 = k * Constants.PI2; d5 = carry[ch]; for (i = 0; i < len; i++) { d1 = Math.sqrt(convBuf1[i] * convBuf1[i] + convBuf2[i] * convBuf2[i]); d2 = Math.atan2(convBuf2[i], convBuf1[i]); if (d2 - d3 > Math.PI) { k--; d4 = k * Constants.PI2; } else if (d3 - d2 > Math.PI) { k++; d4 = k * Constants.PI2; } if (d1 > 0.0) { d5 = Math.log(d1); } d2 += d4; reOutBuf[ch][i] += (float) d5; imOutBuf[ch][i] += (float) d2; d3 = d2; } phi[ch] = d3; wrap[ch] = k; carry[ch] = d5; } else { for (i = 0; i < len; i++) { f1 = convBuf1[i]; if (f1 > 0) { reOutBuf[ch][i] += wetGain * (float) Math.log(f1); } // else undefiniert } } break; case OP_EXP: // ================ Exp ================ if (complex) { for (i = 0; i < len; i++) { d1 = wetGain * Math.exp(convBuf1[i]); reOutBuf[ch][i] += (float) (d1 * Math.cos(convBuf2[i])); imOutBuf[ch][i] += (float) (d1 * Math.sin(convBuf2[i])); } } else { for (i = 0; i < len; i++) { reOutBuf[ch][i] += wetGain * (float) Math.exp(convBuf1[i]); } } break; case OP_NOT: // ================ NOT ================ for (i = 0; i < len; i++) { lo = ~((long) (convBuf1[i] * 2147483647.0)); reOutBuf[ch][i] += wetGain * (float) ((lo & 0xFFFFFFFFL) / 2147483647.0); } if (complex) { for (i = 0; i < len; i++) { lo = ~((long) (convBuf2[i] * 2147483647.0)); imOutBuf[ch][i] += wetGain * (float) ((lo & 0xFFFFFFFFL) / 2147483647.0); } } break; } } // for outChan progOff += len; // .... progress .... setProgression((float) progOff / (float) progLen); // .... check running .... if (!threadRunning) break topLevel; // ---- write output chunk ---- if (reFloatF != null) { for (ch = 0; ch < outChanNum; ch++) { reFloatF[ch].writeFloats(reOutBuf[ch], 0, len); if (pr.bool[PR_HASIMOUTPUT]) { imFloatF[ch].writeFloats(imOutBuf[ch], 0, len); } } } else { reOutF.writeFrames(reOutBuf, 0, len); if (pr.bool[PR_HASIMOUTPUT]) { imOutF.writeFrames(imOutBuf, 0, len); } } // check max amp for (ch = 0; ch < outChanNum; ch++) { convBuf1 = reOutBuf[ch]; for (i = 0; i < len; i++) { f1 = Math.abs(convBuf1[i]); if (f1 > maxAmp) { maxAmp = f1; } } if (pr.bool[PR_HASIMOUTPUT]) { convBuf1 = imOutBuf[ch]; for (i = 0; i < len; i++) { f1 = Math.abs(convBuf1[i]); if (f1 > maxAmp) { maxAmp = f1; } } } } progOff += len; framesWritten += len; // .... progress .... setProgression((float) progOff / (float) progLen); } // while not framesWritten // ----==================== normalize output ====================---- if (pr.intg[PR_GAINTYPE] == GAIN_UNITY) { peakGain = new Param(maxAmp, Param.ABS_AMP); gain = (float) (Param.transform( pr.para[PR_GAIN], Param.ABS_AMP, new Param(1.0 / peakGain.value, peakGain.unit), null)) .value; f1 = pr.bool[PR_HASIMOUTPUT] ? ((1.0f + getProgression()) / 2) : 1.0f; normalizeAudioFile(reFloatF, reOutF, reOutBuf, gain, f1); if (pr.bool[PR_HASIMOUTPUT]) { normalizeAudioFile(imFloatF, imOutF, imOutBuf, gain, 1.0f); } maxAmp *= gain; for (ch = 0; ch < outChanNum; ch++) { reFloatF[ch].cleanUp(); reFloatF[ch] = null; reTempFile[ch].delete(); reTempFile[ch] = null; if (pr.bool[PR_HASIMOUTPUT]) { imFloatF[ch].cleanUp(); imFloatF[ch] = null; imTempFile[ch].delete(); imTempFile[ch] = null; } } } // .... check running .... if (!threadRunning) break topLevel; // ---- Finish ---- reOutF.close(); reOutF = null; reOutStream = null; if (imOutF != null) { imOutF.close(); imOutF = null; imOutStream = null; } reInF.close(); reInF = null; reInStream = null; if (pr.bool[PR_HASIMINPUT]) { imInF.close(); imInF = null; imInStream = null; } reOutBuf = null; imOutBuf = null; reInBuf = null; imInBuf = null; // inform about clipping/ low level handleClipping(maxAmp); } catch (IOException e1) { setError(e1); } catch (OutOfMemoryError e2) { reOutBuf = null; imOutBuf = null; reInBuf = null; imInBuf = null; convBuf1 = null; convBuf2 = null; System.gc(); setError(new Exception(ERR_MEMORY)); } // ---- cleanup (topLevel) ---- convBuf1 = null; convBuf2 = null; if (reInF != null) { reInF.cleanUp(); reInF = null; } if (imInF != null) { imInF.cleanUp(); imInF = null; } if (reOutF != null) { reOutF.cleanUp(); reOutF = null; } if (imOutF != null) { imOutF.cleanUp(); imOutF = null; } if (reFloatF != null) { for (ch = 0; ch < reFloatF.length; ch++) { if (reFloatF[ch] != null) { reFloatF[ch].cleanUp(); reFloatF[ch] = null; } if (reTempFile[ch] != null) { reTempFile[ch].delete(); reTempFile[ch] = null; } } } if (imFloatF != null) { for (ch = 0; ch < imFloatF.length; ch++) { if (imFloatF[ch] != null) { imFloatF[ch].cleanUp(); imFloatF[ch] = null; } if (imTempFile[ch] != null) { imTempFile[ch].delete(); imTempFile[ch] = null; } } } } // process()
/** test BarbManipulationRendererJ3D */ public static void main(String args[]) throws VisADException, RemoteException { System.out.println("BMR.main()"); // construct RealTypes for wind record components RealType lat = RealType.Latitude; RealType lon = RealType.Longitude; RealType windx = RealType.getRealType("windx", CommonUnit.meterPerSecond); RealType windy = RealType.getRealType("windy", CommonUnit.meterPerSecond); RealType red = RealType.getRealType("red"); RealType green = RealType.getRealType("green"); // EarthVectorType extends RealTupleType and says that its // components are vectors in m/s with components parallel // to Longitude (positive east) and Latitude (positive north) EarthVectorType windxy = new EarthVectorType(windx, windy); RealType wind_dir = RealType.getRealType("wind_dir", CommonUnit.degree); RealType wind_speed = RealType.getRealType("wind_speed", CommonUnit.meterPerSecond); RealTupleType windds = null; if (args.length > 0) { System.out.println("polar winds"); windds = new RealTupleType( new RealType[] {wind_dir, wind_speed}, new WindPolarCoordinateSystem(windxy), null); } // construct Java3D display and mappings that govern // how wind records are displayed DisplayImpl display = new DisplayImplJ3D("display1", new TwoDDisplayRendererJ3D()); ScalarMap lonmap = new ScalarMap(lon, Display.XAxis); display.addMap(lonmap); ScalarMap latmap = new ScalarMap(lat, Display.YAxis); display.addMap(latmap); FlowControl flow_control; if (args.length > 0) { ScalarMap winds_map = new ScalarMap(wind_speed, Display.Flow1Radial); display.addMap(winds_map); winds_map.setRange(0.0, 1.0); // do this for barb rendering ScalarMap windd_map = new ScalarMap(wind_dir, Display.Flow1Azimuth); display.addMap(windd_map); windd_map.setRange(0.0, 360.0); // do this for barb rendering flow_control = (FlowControl) windd_map.getControl(); flow_control.setFlowScale(0.15f); // this controls size of barbs } else { ScalarMap windx_map = new ScalarMap(windx, Display.Flow1X); display.addMap(windx_map); windx_map.setRange(-1.0, 1.0); // do this for barb rendering ScalarMap windy_map = new ScalarMap(windy, Display.Flow1Y); display.addMap(windy_map); windy_map.setRange(-1.0, 1.0); // do this for barb rendering flow_control = (FlowControl) windy_map.getControl(); flow_control.setFlowScale(0.15f); // this controls size of barbs } display.addMap(new ScalarMap(red, Display.Red)); display.addMap(new ScalarMap(green, Display.Green)); display.addMap(new ConstantMap(1.0, Display.Blue)); DataReferenceImpl[] refs = new DataReferenceImpl[N * N]; int k = 0; // create an array of N by N winds for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { double u = 2.0 * i / (N - 1.0) - 1.0; double v = 2.0 * j / (N - 1.0) - 1.0; // each wind record is a Tuple (lon, lat, (windx, windy), red, green) // set colors by wind components, just for grins Tuple tuple; double fx = 30.0 * u; double fy = 30.0 * v; if (args.length > 0) { double fd = Data.RADIANS_TO_DEGREES * Math.atan2(-fx, -fy); double fs = Math.sqrt(fx * fx + fy * fy); tuple = new Tuple( new Data[] { new Real(lon, 10.0 * u), new Real(lat, 10.0 * v - 40.0), new RealTuple(windds, new double[] {fd, fs}), new Real(red, u), new Real(green, v) }); } else { tuple = new Tuple( new Data[] { new Real(lon, 10.0 * u), new Real(lat, 10.0 * v - 40.0), new RealTuple(windxy, new double[] {fx, fy}), new Real(red, u), new Real(green, v) }); } // construct reference for wind record refs[k] = new DataReferenceImpl("ref_" + k); refs[k].setData(tuple); // link wind record to display via BarbManipulationRendererJ3D // so user can change barb by dragging it // drag with right mouse button and shift to change direction // drag with right mouse button and no shift to change speed BarbManipulationRendererJ3D renderer = new BarbManipulationRendererJ3D(); renderer.setKnotsConvert(true); display.addReferences(renderer, refs[k]); // link wind record to a CellImpl that will listen for changes // and print them WindGetterJ3D cell = new WindGetterJ3D(flow_control, refs[k]); cell.addReference(refs[k]); k++; } } // instead of linking the wind record "DataReferenceImpl refs" to // the WindGetterJ3Ds, you can have some user interface event (e.g., // the user clicks on "DONE") trigger code that does a getData() on // all the refs and stores the records in a file. // create JFrame (i.e., a window) for display and slider JFrame frame = new JFrame("test BarbManipulationRendererJ3D"); frame.addWindowListener( new WindowAdapter() { public void windowClosing(WindowEvent e) { System.exit(0); } }); // create JPanel in JFrame JPanel panel = new JPanel(); panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS)); panel.setAlignmentY(JPanel.TOP_ALIGNMENT); panel.setAlignmentX(JPanel.LEFT_ALIGNMENT); frame.getContentPane().add(panel); // add display to JPanel panel.add(display.getComponent()); // set size of JFrame and make it visible frame.setSize(500, 500); frame.setVisible(true); }
// returns angle of dy/dx as a value from 0...2PI private double atan3(double dy, double dx) { double a = Math.atan2(dy, dx); if (a < 0) a = (Math.PI * 2.0) + a; return a; }