Beispiel #1
0
  protected void paintComponent(Graphics g) {
    super.paintComponent(g);
    Graphics2D g2 = (Graphics2D) g;
    g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
    int w = getWidth();
    int h = getHeight();
    double theta, x, y;

    g2.setPaint(Color.blue);
    double x1 = w * 3 / 24, y1 = h * 3 / 32, x2 = w * 11 / 24, y2 = y1;
    g2.draw(new Line2D.Double(x1, y1, x2, y2));
    // draw this arrow head at point x2, y2 and measure
    // angle theta relative to same point, ie, y2 - and x2 -
    theta = Math.atan2(y2 - y1, x2 - x1);
    drawArrow(g2, theta, x2, y2);

    x1 = w * 3 / 8;
    y1 = h * 13 / 15;
    x2 = w * 2 / 3;
    y2 = y1;
    g2.draw(new Line2D.Double(x1, y1, x2, y2));
    theta = Math.atan2(y1 - y2, x1 - x2);
    drawArrow(g2, theta, x1, y1);

    g2.setPaint(Color.red);
    x1 = w * 3 / 24;
    y1 = h * 4 / 32;
    x2 = x1;
    y2 = h * 18 / 32;
    g2.draw(new Line2D.Double(x1, y1, x2, y2));
    theta = Math.atan2(y2 - y1, x2 - x1);
    drawArrow(g2, theta, x2, y2);

    g2.setPaint(Color.orange);
    x1 = w * 5 / 32;
    y1 = h * 27 / 32;
    x2 = w * 27 / 32;
    y2 = h * 5 / 32;
    g2.draw(new Line2D.Double(x1, y1, x2, y2));
    theta = Math.atan2(y2 - y1, x2 - x1);
    drawArrow(g2, theta, x2, y2);

    g2.setPaint(Color.green.darker());
    x1 = w / 2;
    y1 = h / 2;
    x2 = w * 27 / 32;
    y2 = h * 27 / 32;
    g2.draw(new Line2D.Double(x1, y1, x2, y2));
    theta = Math.atan2(y2 - y1, x2 - x1);
    drawArrow(g2, theta, x2, y2);
  }
Beispiel #2
0
  // From: http://forum.java.sun.com/thread.jspa?threadID=378460&tstart=135
  void drawArrow(
      Graphics2D g2d,
      int xCenter,
      int yCenter,
      int x,
      int y,
      float stroke,
      BasicStroke drawStroke) {
    double aDir = Math.atan2(xCenter - x, yCenter - y);
    // Line can be dashed.
    g2d.setStroke(drawStroke);
    g2d.drawLine(x, y, xCenter, yCenter);
    // make the arrow head solid even if dash pattern has been specified
    g2d.setStroke(lineStroke);
    Polygon tmpPoly = new Polygon();
    int i1 = 12 + (int) (stroke * 2);
    // make the arrow head the same size regardless of the length length
    int i2 = 6 + (int) stroke;
    tmpPoly.addPoint(x, y);
    tmpPoly.addPoint(x + xCor(i1, aDir + .5), y + yCor(i1, aDir + .5));
    tmpPoly.addPoint(x + xCor(i2, aDir), y + yCor(i2, aDir));
    tmpPoly.addPoint(x + xCor(i1, aDir - .5), y + yCor(i1, aDir - .5));
    tmpPoly.addPoint(x, y); // arrow tip
    g2d.drawPolygon(tmpPoly);

    // Remove this line to leave arrow head unpainted:
    g2d.fillPolygon(tmpPoly);
  }
    private void generateLookupTables() {
      mySat = new float[myWidth * myHeight];
      myHues = new float[myWidth * myHeight];
      myAlphas = new int[myWidth * myHeight];
      float radius = getRadius();

      // blend is used to create a linear alpha gradient of two extra pixels
      float blend = (radius + 2f) / radius - 1f;

      // Center of the color wheel circle
      int cx = myWidth / 2;
      int cy = myHeight / 2;

      for (int x = 0; x < myWidth; x++) {
        int kx = x - cx; // Kartesian coordinates of x
        int squarekx = kx * kx; // Square of kartesian x

        for (int y = 0; y < myHeight; y++) {
          int ky = cy - y; // Kartesian coordinates of y

          int index = x + y * myWidth;
          mySat[index] = (float) Math.sqrt(squarekx + ky * ky) / radius;
          if (mySat[index] <= 1f) {
            myAlphas[index] = 0xff000000;
          } else {
            myAlphas[index] =
                (int) ((blend - Math.min(blend, mySat[index] - 1f)) * 255 / blend) << 24;
            mySat[index] = 1f;
          }
          if (myAlphas[index] != 0) {
            myHues[index] = (float) (Math.atan2(ky, kx) / Math.PI / 2d);
          }
        }
      }
    }
Beispiel #4
0
        public void mousePressed(MouseEvent e) {
          requestFocus();
          Point p = e.getPoint();
          int size =
              Math.min(
                  MAX_SIZE,
                  Math.min(
                      getWidth() - imagePadding.left - imagePadding.right,
                      getHeight() - imagePadding.top - imagePadding.bottom));
          p.translate(-(getWidth() / 2 - size / 2), -(getHeight() / 2 - size / 2));
          if (mode == ColorPicker.BRI || mode == ColorPicker.SAT) {
            // the two circular views:
            double radius = ((double) size) / 2.0;
            double x = p.getX() - size / 2.0;
            double y = p.getY() - size / 2.0;
            double r = Math.sqrt(x * x + y * y) / radius;
            double theta = Math.atan2(y, x) / (Math.PI * 2.0);

            if (r > 1) r = 1;

            if (mode == ColorPicker.BRI) {
              setHSB((float) (theta + .25f), (float) (r), bri);
            } else {
              setHSB((float) (theta + .25f), sat, (float) (r));
            }
          } else if (mode == ColorPicker.HUE) {
            float s = ((float) p.x) / ((float) size);
            float b = ((float) p.y) / ((float) size);
            if (s < 0) s = 0;
            if (s > 1) s = 1;
            if (b < 0) b = 0;
            if (b > 1) b = 1;
            setHSB(hue, s, b);
          } else {
            int x2 = p.x * 255 / size;
            int y2 = p.y * 255 / size;
            if (x2 < 0) x2 = 0;
            if (x2 > 255) x2 = 255;
            if (y2 < 0) y2 = 0;
            if (y2 > 255) y2 = 255;

            if (mode == ColorPicker.RED) {
              setRGB(red, x2, y2);
            } else if (mode == ColorPicker.GREEN) {
              setRGB(x2, green, y2);
            } else {
              setRGB(x2, y2, blue);
            }
          }
        }
Beispiel #5
0
  protected void recalcOutFreq() {
    if (inRate == 0f) return;

    double omegaIn, omegaOut, warp;
    ParamField ggOutFreq;

    omegaIn = pr.para[PR_INFREQ].val / inRate * Constants.PI2;
    warp = Math.max(-0.98, Math.min(0.98, pr.para[PR_WARP].val / 100)); // DAFx2000 'b'
    omegaOut = omegaIn + 2 * Math.atan2(warp * Math.sin(omegaIn), 1.0 - warp * Math.cos(omegaIn));

    ggOutFreq = (ParamField) gui.getItemObj(GG_OUTFREQ);
    if (ggOutFreq != null) {
      ggOutFreq.setParam(new Param(omegaOut / Constants.PI2 * inRate, Param.ABS_HZ));
    }
  }
 public void move() {
   objtimer++;
   // move
   if (xmot.random && objtimer % (int) (35 * xmot.randomchg) == 0) {
     xspeed = xmot.speed * random(-1, 1, 2);
   }
   if (ymot.random && objtimer % (int) (35 * ymot.randomchg) == 0) {
     yspeed = ymot.speed * random(-1, 1, 2);
   }
   if (player != null) {
     double playerdist =
         Math.sqrt((player.x - x) * (player.x - x) + (player.y - y) * (player.y - y))
             * 100.0
             / (pfWidth());
     if (xmot.toplayer && playerdist > xmot.toplayermin && playerdist < xmot.toplayermax) {
       xspeed = 0;
       x += xmot.speed * (player.x > x ? 1 : -1);
     } else if (xmot.frplayer
         && playerdist > xmot.frplayermin
         && playerdist < xmot.frplayermax) {
       xspeed = 0;
       x += xmot.speed * (player.x < x ? 1 : -1);
     }
     if (ymot.toplayer && playerdist > ymot.toplayermin && playerdist < ymot.toplayermax) {
       yspeed = 0;
       y += ymot.speed * (player.y > y ? 1 : -1);
     } else if (ymot.frplayer
         && playerdist > ymot.frplayermin
         && playerdist < ymot.frplayermax) {
       yspeed = 0;
       y += ymot.speed * (player.y < y ? 1 : -1);
     }
   }
   // react to background
   int bounces = 0;
   if (bouncesides.equals("any")) {
     bounces |= 15;
   } else if (bouncesides.equals("top")) {
     bounces |= 1;
   } else if (bouncesides.equals("bottom")) {
     bounces |= 2;
   } else if (bouncesides.equals("topbottom")) {
     bounces |= 3;
   } else if (bouncesides.equals("left")) {
     bounces |= 4;
   } else if (bouncesides.equals("right")) {
     bounces |= 8;
   } else if (bouncesides.equals("leftright")) {
     bounces |= 12;
   }
   if ((bounces & 1) != 0 && y < 0) {
     y = 0;
     if (yspeed < 0) yspeed = -yspeed;
   }
   if ((bounces & 2) != 0 && y > pfHeight() - 16) {
     y = pfHeight() - 16;
     if (yspeed > 0) yspeed = -yspeed;
   }
   if ((bounces & 4) != 0 && x < 0) {
     x = 0;
     if (xspeed < 0) xspeed = -xspeed;
   }
   if ((bounces & 8) != 0 && x > pfWidth() - 16) {
     x = pfWidth() - 16;
     if (xspeed > 0) xspeed = -xspeed;
   }
   // shoot
   if (shoot && shootfreq > 0.0 && objtimer % (int) (shootfreq * 35) == 0) {
     if (shootdir.equals("left")) {
       new AgentBullet(x, y, bullettype, sprite, diebgtype | blockbgtype, -shootspeed, 0);
     } else if (shootdir.equals("right")) {
       new AgentBullet(x, y, bullettype, sprite, diebgtype | blockbgtype, shootspeed, 0);
     } else if (shootdir.equals("up")) {
       new AgentBullet(x, y, bullettype, sprite, diebgtype | blockbgtype, 0, -shootspeed);
     } else if (shootdir.equals("down")) {
       new AgentBullet(x, y, bullettype, sprite, diebgtype | blockbgtype, 0, shootspeed);
     } else if (shootdir.equals("player") && player != null) {
       double angle = Math.atan2(player.x - x, player.y - y);
       new AgentBullet(
           x,
           y,
           bullettype,
           sprite,
           diebgtype | blockbgtype,
           shootspeed * Math.sin(angle),
           shootspeed * Math.cos(angle));
     }
   }
 }
Beispiel #7
0
  /** Regenerates the image. */
  private synchronized void regenerateImage() {
    int size =
        Math.min(
            MAX_SIZE,
            Math.min(
                getWidth() - imagePadding.left - imagePadding.right,
                getHeight() - imagePadding.top - imagePadding.bottom));

    if (mode == ColorPicker.BRI || mode == ColorPicker.SAT) {
      float bri2 = this.bri;
      float sat2 = this.sat;
      float radius = ((float) size) / 2f;
      float hue2;
      float k = 1.2f; // the number of pixels to antialias
      for (int y = 0; y < size; y++) {
        float y2 = (y - size / 2f);
        for (int x = 0; x < size; x++) {
          float x2 = (x - size / 2f);
          double theta = Math.atan2(y2, x2) - 3 * Math.PI / 2.0;
          if (theta < 0) theta += 2 * Math.PI;

          double r = Math.sqrt(x2 * x2 + y2 * y2);
          if (r <= radius) {
            if (mode == ColorPicker.BRI) {
              hue2 = (float) (theta / (2 * Math.PI));
              sat2 = (float) (r / radius);
            } else { // SAT
              hue2 = (float) (theta / (2 * Math.PI));
              bri2 = (float) (r / radius);
            }
            row[x] = Color.HSBtoRGB(hue2, sat2, bri2);
            if (r > radius - k) {
              int alpha = (int) (255 - 255 * (r - radius + k) / k);
              if (alpha < 0) alpha = 0;
              if (alpha > 255) alpha = 255;
              row[x] = row[x] & 0xffffff + (alpha << 24);
            }
          } else {
            row[x] = 0x00000000;
          }
        }
        image.getRaster().setDataElements(0, y, size, 1, row);
      }
    } else if (mode == ColorPicker.HUE) {
      float hue2 = this.hue;
      for (int y = 0; y < size; y++) {
        float y2 = ((float) y) / ((float) size);
        for (int x = 0; x < size; x++) {
          float x2 = ((float) x) / ((float) size);
          row[x] = Color.HSBtoRGB(hue2, x2, y2);
        }
        image.getRaster().setDataElements(0, y, image.getWidth(), 1, row);
      }
    } else { // mode is RED, GREEN, or BLUE
      int red2 = red;
      int green2 = green;
      int blue2 = blue;
      for (int y = 0; y < size; y++) {
        float y2 = ((float) y) / ((float) size);
        for (int x = 0; x < size; x++) {
          float x2 = ((float) x) / ((float) size);
          if (mode == ColorPicker.RED) {
            green2 = (int) (x2 * 255 + .49);
            blue2 = (int) (y2 * 255 + .49);
          } else if (mode == ColorPicker.GREEN) {
            red2 = (int) (x2 * 255 + .49);
            blue2 = (int) (y2 * 255 + .49);
          } else {
            red2 = (int) (x2 * 255 + .49);
            green2 = (int) (y2 * 255 + .49);
          }
          row[x] = 0xFF000000 + (red2 << 16) + (green2 << 8) + blue2;
        }
        image.getRaster().setDataElements(0, y, size, 1, row);
      }
    }
    repaint();
  }
Beispiel #8
0
  /** Translation durchfuehren */
  public void process() {
    int i, j, k;
    int ch, len;
    float f1;
    double d1, d2, d3, d4, d5;
    long progOff, progLen, lo;

    // io
    AudioFile reInF = null;
    AudioFile imInF = null;
    AudioFile reOutF = null;
    AudioFile imOutF = null;
    AudioFileDescr reInStream = null;
    AudioFileDescr imInStream = null;
    AudioFileDescr reOutStream = null;
    AudioFileDescr imOutStream = null;
    FloatFile reFloatF[] = null;
    FloatFile imFloatF[] = null;
    File reTempFile[] = null;
    File imTempFile[] = null;
    int outChanNum;

    float[][] reInBuf; // [ch][i]
    float[][] imInBuf; // [ch][i]
    float[][] reOutBuf = null; // [ch][i]
    float[][] imOutBuf = null; // [ch][i]
    float[] convBuf1, convBuf2;
    boolean complex;

    PathField ggOutput;

    // Synthesize
    Param ampRef = new Param(1.0, Param.ABS_AMP); // transform-Referenz
    float gain; // gain abs amp
    float dryGain, wetGain;
    float inGain;
    float maxAmp = 0.0f;
    Param peakGain;

    int inLength, inOff;
    int pre;
    int post;
    int length;
    int framesRead, framesWritten, outLength;
    boolean polarIn, polarOut;

    // phase unwrapping
    double[] phi;
    int[] wrap;
    double[] carry;

    Param lenRef;

    topLevel:
    try {

      complex = pr.bool[PR_HASIMINPUT] || pr.bool[PR_HASIMOUTPUT];
      polarIn = pr.intg[PR_OPERATOR] == OP_POLAR2RECT;
      polarOut = pr.intg[PR_OPERATOR] == OP_RECT2POLAR;
      if ((polarIn || polarOut) && !complex) throw new IOException(ERR_NOTCOMPLEX);

      // ---- open input ----

      reInF = AudioFile.openAsRead(new File(pr.text[PR_REINPUTFILE]));
      reInStream = reInF.getDescr();
      inLength = (int) reInStream.length;
      reInBuf = new float[reInStream.channels][8192];
      imInBuf = new float[reInStream.channels][8192];

      if (pr.bool[PR_HASIMINPUT]) {
        imInF = AudioFile.openAsRead(new File(pr.text[PR_IMINPUTFILE]));
        imInStream = imInF.getDescr();
        if (imInStream.channels != reInStream.channels) throw new IOException(ERR_COMPLEX);
        inLength = (int) Math.min(inLength, imInStream.length);
      }

      lenRef = new Param(AudioFileDescr.samplesToMillis(reInStream, inLength), Param.ABS_MS);
      d1 =
          AudioFileDescr.millisToSamples(
              reInStream, (Param.transform(pr.para[PR_OFFSET], Param.ABS_MS, lenRef, null).value));
      j = (int) (d1 >= 0.0 ? (d1 + 0.5) : (d1 - 0.5)); // correct rounding for negative values!
      length =
          (int)
              (AudioFileDescr.millisToSamples(
                      reInStream,
                      (Param.transform(pr.para[PR_LENGTH], Param.ABS_MS, lenRef, null)).value)
                  + 0.5);

      // System.err.println( "offset = "+j );

      if (j >= 0) {
        inOff = Math.min(j, inLength);
        if (!pr.bool[PR_REVERSE]) {
          reInF.seekFrame(inOff);
          if (pr.bool[PR_HASIMINPUT]) {
            imInF.seekFrame(inOff);
          }
        }
        inLength -= inOff;
        pre = 0;
      } else {
        inOff = 0;
        pre = Math.min(-j, length);
      }
      inLength = Math.min(inLength, length - pre);
      post = length - pre - inLength;

      if (pr.bool[PR_REVERSE]) {
        i = pre;
        pre = post;
        post = i;
        inOff += inLength;
      }

      // .... check running ....
      if (!threadRunning) break topLevel;

      // for( op = 0; op < 2; op++ ) {
      // 	System.out.println( op +": pre "+pre[op]+" / len "+inLength[op]+" / post "+post[op] );
      // }
      // System.out.println( "tot "+length[0]);

      outLength = length;
      outChanNum = reInStream.channels;

      // ---- open output ----

      ggOutput = (PathField) gui.getItemObj(GG_REOUTPUTFILE);
      if (ggOutput == null) throw new IOException(ERR_MISSINGPROP);
      reOutStream = new AudioFileDescr(reInStream);
      ggOutput.fillStream(reOutStream);
      reOutStream.channels = outChanNum;
      // well, more sophisticated code would
      // move and truncate the markers...
      if ((pre == 0) /* && (post == 0) */) {
        reInF.readMarkers();
        reOutStream.setProperty(
            AudioFileDescr.KEY_MARKERS, reInStream.getProperty(AudioFileDescr.KEY_MARKERS));
      }
      reOutF = AudioFile.openAsWrite(reOutStream);
      reOutBuf = new float[outChanNum][8192];
      imOutBuf = new float[outChanNum][8192];

      if (pr.bool[PR_HASIMOUTPUT]) {
        imOutStream = new AudioFileDescr(reInStream);
        ggOutput.fillStream(imOutStream);
        imOutStream.channels = outChanNum;
        imOutStream.file = new File(pr.text[PR_IMOUTPUTFILE]);
        imOutF = AudioFile.openAsWrite(imOutStream);
      }
      // .... check running ....
      if (!threadRunning) break topLevel;

      // ---- Further inits ----

      phi = new double[outChanNum];
      wrap = new int[outChanNum];
      carry = new double[outChanNum];
      for (ch = 0; ch < outChanNum; ch++) {
        phi[ch] = 0.0;
        wrap[ch] = 0;
        carry[ch] = Double.NEGATIVE_INFINITY;
      }

      progOff = 0; // read, transform, write
      progLen = (long) outLength * 3;

      wetGain = (float) (Param.transform(pr.para[PR_WETMIX], Param.ABS_AMP, ampRef, null)).value;
      dryGain = (float) (Param.transform(pr.para[PR_DRYMIX], Param.ABS_AMP, ampRef, null)).value;
      if (pr.bool[PR_DRYINVERT]) {
        dryGain = -dryGain;
      }
      inGain = (float) (Param.transform(pr.para[PR_INPUTGAIN], Param.ABS_AMP, ampRef, null)).value;
      if (pr.bool[PR_INVERT]) {
        inGain = -inGain;
      }

      // normalization requires temp files
      if (pr.intg[PR_GAINTYPE] == GAIN_UNITY) {
        reTempFile = new File[outChanNum];
        reFloatF = new FloatFile[outChanNum];
        for (ch = 0;
            ch < outChanNum;
            ch++) { // first zero them because an exception might be thrown
          reTempFile[ch] = null;
          reFloatF[ch] = null;
        }
        for (ch = 0; ch < outChanNum; ch++) {
          reTempFile[ch] = IOUtil.createTempFile();
          reFloatF[ch] = new FloatFile(reTempFile[ch], GenericFile.MODE_OUTPUT);
        }
        if (pr.bool[PR_HASIMOUTPUT]) {
          imTempFile = new File[outChanNum];
          imFloatF = new FloatFile[outChanNum];
          for (ch = 0;
              ch < outChanNum;
              ch++) { // first zero them because an exception might be thrown
            imTempFile[ch] = null;
            imFloatF[ch] = null;
          }
          for (ch = 0; ch < outChanNum; ch++) {
            imTempFile[ch] = IOUtil.createTempFile();
            imFloatF[ch] = new FloatFile(imTempFile[ch], GenericFile.MODE_OUTPUT);
          }
        }
        progLen += outLength;
      } else {
        gain = (float) (Param.transform(pr.para[PR_GAIN], Param.ABS_AMP, ampRef, null)).value;
        wetGain *= gain;
        dryGain *= gain;
      }
      // .... check running ....
      if (!threadRunning) break topLevel;

      // ----==================== the real stuff ====================----

      framesRead = 0;
      framesWritten = 0;

      while (threadRunning && (framesWritten < outLength)) {
        // ---- choose chunk len ----
        len = Math.min(8192, outLength - framesWritten);
        if (pre > 0) {
          len = Math.min(len, pre);
        } else if (inLength > 0) {
          len = Math.min(len, inLength);
        } else {
          len = Math.min(len, post);
        }

        // ---- read input chunks ----
        if (pre > 0) {
          Util.clear(reInBuf);
          if (complex) {
            Util.clear(imInBuf);
          }
          pre -= len;
        } else if (inLength > 0) {
          if (pr.bool[PR_REVERSE]) { // ---- read reversed ----
            reInF.seekFrame(inOff - framesRead - len);
            reInF.readFrames(reInBuf, 0, len);
            for (ch = 0; ch < reInStream.channels; ch++) {
              convBuf1 = reInBuf[ch];
              for (i = 0, j = len - 1; i < j; i++, j--) {
                f1 = convBuf1[j];
                convBuf1[j] = convBuf1[i];
                convBuf1[i] = f1;
              }
            }
            if (pr.bool[PR_HASIMINPUT]) {
              imInF.seekFrame(inOff - framesRead - len);
              imInF.readFrames(imInBuf, 0, len);
              for (ch = 0; ch < imInStream.channels; ch++) {
                convBuf1 = imInBuf[ch];
                for (i = 0, j = len - 1; i < j; i++, j--) {
                  f1 = convBuf1[j];
                  convBuf1[j] = convBuf1[i];
                  convBuf1[i] = f1;
                }
              }
            } else if (complex) {
              Util.clear(imInBuf);
            }
          } else { // ---- read normal ----
            reInF.readFrames(reInBuf, 0, len);
            if (pr.bool[PR_HASIMINPUT]) {
              imInF.readFrames(imInBuf, 0, len);
            } else if (complex) {
              Util.clear(imInBuf);
            }
          }
          inLength -= len;
          framesRead += len;
        } else {
          Util.clear(reInBuf);
          if (complex) {
            Util.clear(imInBuf);
          }
          post -= len;
        }
        progOff += len;
        // .... progress ....
        setProgression((float) progOff / (float) progLen);
        // .... check running ....
        if (!threadRunning) break topLevel;

        // ---- save dry signal ----
        for (ch = 0; ch < outChanNum; ch++) {
          convBuf1 = reInBuf[ch];
          convBuf2 = reOutBuf[ch];
          for (i = 0; i < len; i++) {
            convBuf2[i] = convBuf1[i] * dryGain;
          }
          if (complex) {
            convBuf1 = imInBuf[ch];
            convBuf2 = imOutBuf[ch];
            for (i = 0; i < len; i++) {
              convBuf2[i] = convBuf1[i] * dryGain;
            }
          }
        }

        // ---- rectify + apply input gain ----
        for (ch = 0; ch < reInStream.channels; ch++) {
          convBuf1 = reInBuf[ch];
          convBuf2 = imInBuf[ch];
          // ---- rectify ----
          if (pr.bool[PR_RECTIFY]) {
            if (complex) {
              if (polarIn) {
                for (i = 0; i < len; i++) {
                  convBuf2[i] = 0.0f;
                }
              } else {
                for (i = 0; i < len; i++) {
                  d1 = convBuf1[i];
                  d2 = convBuf2[i];
                  convBuf1[i] = (float) Math.sqrt(d1 * d1 + d2 * d2);
                  convBuf2[i] = 0.0f;
                }
              }
            } else {
              for (i = 0; i < len; i++) {
                convBuf1[i] = Math.abs(convBuf1[i]);
              }
            }
          }
          // ---- apply input gain ----
          Util.mult(convBuf1, 0, len, inGain);
          if (complex & !polarIn) {
            Util.mult(convBuf2, 0, len, inGain);
          }
        }

        // ---- heart of the dragon ----
        for (ch = 0; ch < outChanNum; ch++) {
          convBuf1 = reInBuf[ch];
          convBuf2 = imInBuf[ch];

          switch (pr.intg[PR_OPERATOR]) {
            case OP_NONE: // ================ None ================
              for (i = 0; i < len; i++) {
                reOutBuf[ch][i] += wetGain * convBuf1[i];
              }
              if (complex) {
                for (i = 0; i < len; i++) {
                  imOutBuf[ch][i] += wetGain * convBuf2[i];
                }
              }
              break;

            case OP_SIN: // ================ Cosinus ================
              if (complex) {
                for (i = 0; i < len; i++) {
                  reOutBuf[ch][i] += wetGain * (float) Math.sin(convBuf1[i] * Math.PI);
                  imOutBuf[ch][i] += wetGain * (float) Math.sin(convBuf2[i] * Math.PI);
                }
              } else {
                for (i = 0; i < len; i++) {
                  reOutBuf[ch][i] += wetGain * (float) Math.sin(convBuf1[i] * Math.PI);
                }
              }
              break;

            case OP_SQR: // ================ Square ================
              if (complex) {
                for (i = 0; i < len; i++) {
                  reOutBuf[ch][i] +=
                      wetGain * (convBuf1[i] * convBuf1[i] - convBuf2[i] * convBuf2[i]);
                  imOutBuf[ch][i] -= wetGain * (convBuf1[i] * convBuf2[i] * 2);
                }
              } else {
                for (i = 0; i < len; i++) {
                  reOutBuf[ch][i] += wetGain * (convBuf1[i] * convBuf1[i]);
                }
              }
              break;

            case OP_SQRT: // ================ Square root ================
              if (complex) {
                d3 = phi[ch];
                k = wrap[ch];
                d4 = k * Constants.PI2;
                for (i = 0; i < len; i++) {
                  d1 =
                      wetGain
                          * Math.pow(convBuf1[i] * convBuf1[i] + convBuf2[i] * convBuf2[i], 0.25);
                  d2 = Math.atan2(convBuf2[i], convBuf1[i]);
                  if (d2 - d3 > Math.PI) {
                    k--;
                    d4 = k * Constants.PI2;
                  } else if (d3 - d2 > Math.PI) {
                    k++;
                    d4 = k * Constants.PI2;
                  }
                  d2 += d4;
                  d3 = d2;
                  d2 /= 2;
                  reOutBuf[ch][i] += (float) (d1 * Math.cos(d2));
                  imOutBuf[ch][i] += (float) (d1 * Math.sin(d2));
                }
                phi[ch] = d3;
                wrap[ch] = k;

              } else {
                for (i = 0; i < len; i++) {
                  f1 = convBuf1[i];
                  if (f1 > 0) {
                    reOutBuf[ch][i] += wetGain * (float) Math.sqrt(f1);
                  } // else undefiniert
                }
              }
              break;

            case OP_RECT2POLARW: // ================ Rect->Polar (wrapped) ================
              for (i = 0; i < len; i++) {
                d1 = wetGain * Math.sqrt(convBuf1[i] * convBuf1[i] + convBuf2[i] * convBuf2[i]);
                d2 = Math.atan2(convBuf2[i], convBuf1[i]);
                reOutBuf[ch][i] += (float) d1;
                imOutBuf[ch][i] += (float) d2;
              }
              break;

            case OP_RECT2POLAR: // ================ Rect->Polar ================
              d3 = phi[ch];
              k = wrap[ch];
              d4 = k * Constants.PI2;
              for (i = 0; i < len; i++) {
                d1 = wetGain * Math.sqrt(convBuf1[i] * convBuf1[i] + convBuf2[i] * convBuf2[i]);
                d2 = Math.atan2(convBuf2[i], convBuf1[i]);
                if (d2 - d3 > Math.PI) {
                  k--;
                  d4 = k * Constants.PI2;
                } else if (d3 - d2 > Math.PI) {
                  k++;
                  d4 = k * Constants.PI2;
                }
                d2 += d4;
                reOutBuf[ch][i] += (float) d1;
                imOutBuf[ch][i] += (float) d2;
                d3 = d2;
              }
              phi[ch] = d3;
              wrap[ch] = k;
              break;

            case OP_POLAR2RECT: // ================ Polar->Rect ================
              for (i = 0; i < len; i++) {
                f1 = wetGain * convBuf1[i];
                reOutBuf[ch][i] += f1 * (float) Math.cos(convBuf2[i]);
                imOutBuf[ch][i] += f1 * (float) Math.sin(convBuf2[i]);
              }
              break;

            case OP_LOG: // ================ Log ================
              if (complex) {
                d3 = phi[ch];
                k = wrap[ch];
                d4 = k * Constants.PI2;
                d5 = carry[ch];
                for (i = 0; i < len; i++) {
                  d1 = Math.sqrt(convBuf1[i] * convBuf1[i] + convBuf2[i] * convBuf2[i]);
                  d2 = Math.atan2(convBuf2[i], convBuf1[i]);
                  if (d2 - d3 > Math.PI) {
                    k--;
                    d4 = k * Constants.PI2;
                  } else if (d3 - d2 > Math.PI) {
                    k++;
                    d4 = k * Constants.PI2;
                  }
                  if (d1 > 0.0) {
                    d5 = Math.log(d1);
                  }
                  d2 += d4;
                  reOutBuf[ch][i] += (float) d5;
                  imOutBuf[ch][i] += (float) d2;
                  d3 = d2;
                }
                phi[ch] = d3;
                wrap[ch] = k;
                carry[ch] = d5;

              } else {
                for (i = 0; i < len; i++) {
                  f1 = convBuf1[i];
                  if (f1 > 0) {
                    reOutBuf[ch][i] += wetGain * (float) Math.log(f1);
                  } // else undefiniert
                }
              }
              break;

            case OP_EXP: // ================ Exp ================
              if (complex) {
                for (i = 0; i < len; i++) {
                  d1 = wetGain * Math.exp(convBuf1[i]);
                  reOutBuf[ch][i] += (float) (d1 * Math.cos(convBuf2[i]));
                  imOutBuf[ch][i] += (float) (d1 * Math.sin(convBuf2[i]));
                }
              } else {
                for (i = 0; i < len; i++) {
                  reOutBuf[ch][i] += wetGain * (float) Math.exp(convBuf1[i]);
                }
              }
              break;

            case OP_NOT: // ================ NOT ================
              for (i = 0; i < len; i++) {
                lo = ~((long) (convBuf1[i] * 2147483647.0));
                reOutBuf[ch][i] += wetGain * (float) ((lo & 0xFFFFFFFFL) / 2147483647.0);
              }
              if (complex) {
                for (i = 0; i < len; i++) {
                  lo = ~((long) (convBuf2[i] * 2147483647.0));
                  imOutBuf[ch][i] += wetGain * (float) ((lo & 0xFFFFFFFFL) / 2147483647.0);
                }
              }
              break;
          }
        } // for outChan
        progOff += len;
        // .... progress ....
        setProgression((float) progOff / (float) progLen);
        // .... check running ....
        if (!threadRunning) break topLevel;

        // ---- write output chunk ----
        if (reFloatF != null) {
          for (ch = 0; ch < outChanNum; ch++) {
            reFloatF[ch].writeFloats(reOutBuf[ch], 0, len);
            if (pr.bool[PR_HASIMOUTPUT]) {
              imFloatF[ch].writeFloats(imOutBuf[ch], 0, len);
            }
          }
        } else {
          reOutF.writeFrames(reOutBuf, 0, len);
          if (pr.bool[PR_HASIMOUTPUT]) {
            imOutF.writeFrames(imOutBuf, 0, len);
          }
        }
        // check max amp
        for (ch = 0; ch < outChanNum; ch++) {
          convBuf1 = reOutBuf[ch];
          for (i = 0; i < len; i++) {
            f1 = Math.abs(convBuf1[i]);
            if (f1 > maxAmp) {
              maxAmp = f1;
            }
          }
          if (pr.bool[PR_HASIMOUTPUT]) {
            convBuf1 = imOutBuf[ch];
            for (i = 0; i < len; i++) {
              f1 = Math.abs(convBuf1[i]);
              if (f1 > maxAmp) {
                maxAmp = f1;
              }
            }
          }
        }

        progOff += len;
        framesWritten += len;
        // .... progress ....
        setProgression((float) progOff / (float) progLen);
      } // while not framesWritten

      // ----==================== normalize output ====================----

      if (pr.intg[PR_GAINTYPE] == GAIN_UNITY) {
        peakGain = new Param(maxAmp, Param.ABS_AMP);
        gain =
            (float)
                (Param.transform(
                        pr.para[PR_GAIN],
                        Param.ABS_AMP,
                        new Param(1.0 / peakGain.value, peakGain.unit),
                        null))
                    .value;
        f1 = pr.bool[PR_HASIMOUTPUT] ? ((1.0f + getProgression()) / 2) : 1.0f;
        normalizeAudioFile(reFloatF, reOutF, reOutBuf, gain, f1);
        if (pr.bool[PR_HASIMOUTPUT]) {
          normalizeAudioFile(imFloatF, imOutF, imOutBuf, gain, 1.0f);
        }
        maxAmp *= gain;

        for (ch = 0; ch < outChanNum; ch++) {
          reFloatF[ch].cleanUp();
          reFloatF[ch] = null;
          reTempFile[ch].delete();
          reTempFile[ch] = null;
          if (pr.bool[PR_HASIMOUTPUT]) {
            imFloatF[ch].cleanUp();
            imFloatF[ch] = null;
            imTempFile[ch].delete();
            imTempFile[ch] = null;
          }
        }
      }
      // .... check running ....
      if (!threadRunning) break topLevel;

      // ---- Finish ----

      reOutF.close();
      reOutF = null;
      reOutStream = null;
      if (imOutF != null) {
        imOutF.close();
        imOutF = null;
        imOutStream = null;
      }
      reInF.close();
      reInF = null;
      reInStream = null;
      if (pr.bool[PR_HASIMINPUT]) {
        imInF.close();
        imInF = null;
        imInStream = null;
      }
      reOutBuf = null;
      imOutBuf = null;
      reInBuf = null;
      imInBuf = null;

      // inform about clipping/ low level
      handleClipping(maxAmp);
    } catch (IOException e1) {
      setError(e1);
    } catch (OutOfMemoryError e2) {
      reOutBuf = null;
      imOutBuf = null;
      reInBuf = null;
      imInBuf = null;
      convBuf1 = null;
      convBuf2 = null;
      System.gc();

      setError(new Exception(ERR_MEMORY));
    }

    // ---- cleanup (topLevel) ----
    convBuf1 = null;
    convBuf2 = null;

    if (reInF != null) {
      reInF.cleanUp();
      reInF = null;
    }
    if (imInF != null) {
      imInF.cleanUp();
      imInF = null;
    }
    if (reOutF != null) {
      reOutF.cleanUp();
      reOutF = null;
    }
    if (imOutF != null) {
      imOutF.cleanUp();
      imOutF = null;
    }
    if (reFloatF != null) {
      for (ch = 0; ch < reFloatF.length; ch++) {
        if (reFloatF[ch] != null) {
          reFloatF[ch].cleanUp();
          reFloatF[ch] = null;
        }
        if (reTempFile[ch] != null) {
          reTempFile[ch].delete();
          reTempFile[ch] = null;
        }
      }
    }
    if (imFloatF != null) {
      for (ch = 0; ch < imFloatF.length; ch++) {
        if (imFloatF[ch] != null) {
          imFloatF[ch].cleanUp();
          imFloatF[ch] = null;
        }
        if (imTempFile[ch] != null) {
          imTempFile[ch].delete();
          imTempFile[ch] = null;
        }
      }
    }
  } // process()
  /** test BarbManipulationRendererJ3D */
  public static void main(String args[]) throws VisADException, RemoteException {

    System.out.println("BMR.main()");

    // construct RealTypes for wind record components
    RealType lat = RealType.Latitude;
    RealType lon = RealType.Longitude;
    RealType windx = RealType.getRealType("windx", CommonUnit.meterPerSecond);
    RealType windy = RealType.getRealType("windy", CommonUnit.meterPerSecond);
    RealType red = RealType.getRealType("red");
    RealType green = RealType.getRealType("green");

    // EarthVectorType extends RealTupleType and says that its
    // components are vectors in m/s with components parallel
    // to Longitude (positive east) and Latitude (positive north)
    EarthVectorType windxy = new EarthVectorType(windx, windy);

    RealType wind_dir = RealType.getRealType("wind_dir", CommonUnit.degree);
    RealType wind_speed = RealType.getRealType("wind_speed", CommonUnit.meterPerSecond);
    RealTupleType windds = null;
    if (args.length > 0) {
      System.out.println("polar winds");
      windds =
          new RealTupleType(
              new RealType[] {wind_dir, wind_speed}, new WindPolarCoordinateSystem(windxy), null);
    }

    // construct Java3D display and mappings that govern
    // how wind records are displayed
    DisplayImpl display = new DisplayImplJ3D("display1", new TwoDDisplayRendererJ3D());
    ScalarMap lonmap = new ScalarMap(lon, Display.XAxis);
    display.addMap(lonmap);
    ScalarMap latmap = new ScalarMap(lat, Display.YAxis);
    display.addMap(latmap);

    FlowControl flow_control;
    if (args.length > 0) {
      ScalarMap winds_map = new ScalarMap(wind_speed, Display.Flow1Radial);
      display.addMap(winds_map);
      winds_map.setRange(0.0, 1.0); // do this for barb rendering
      ScalarMap windd_map = new ScalarMap(wind_dir, Display.Flow1Azimuth);
      display.addMap(windd_map);
      windd_map.setRange(0.0, 360.0); // do this for barb rendering
      flow_control = (FlowControl) windd_map.getControl();
      flow_control.setFlowScale(0.15f); // this controls size of barbs
    } else {
      ScalarMap windx_map = new ScalarMap(windx, Display.Flow1X);
      display.addMap(windx_map);
      windx_map.setRange(-1.0, 1.0); // do this for barb rendering
      ScalarMap windy_map = new ScalarMap(windy, Display.Flow1Y);
      display.addMap(windy_map);
      windy_map.setRange(-1.0, 1.0); // do this for barb rendering
      flow_control = (FlowControl) windy_map.getControl();
      flow_control.setFlowScale(0.15f); // this controls size of barbs
    }

    display.addMap(new ScalarMap(red, Display.Red));
    display.addMap(new ScalarMap(green, Display.Green));
    display.addMap(new ConstantMap(1.0, Display.Blue));

    DataReferenceImpl[] refs = new DataReferenceImpl[N * N];
    int k = 0;
    // create an array of N by N winds
    for (int i = 0; i < N; i++) {
      for (int j = 0; j < N; j++) {
        double u = 2.0 * i / (N - 1.0) - 1.0;
        double v = 2.0 * j / (N - 1.0) - 1.0;

        // each wind record is a Tuple (lon, lat, (windx, windy), red, green)
        // set colors by wind components, just for grins
        Tuple tuple;
        double fx = 30.0 * u;
        double fy = 30.0 * v;
        if (args.length > 0) {
          double fd = Data.RADIANS_TO_DEGREES * Math.atan2(-fx, -fy);
          double fs = Math.sqrt(fx * fx + fy * fy);
          tuple =
              new Tuple(
                  new Data[] {
                    new Real(lon, 10.0 * u),
                    new Real(lat, 10.0 * v - 40.0),
                    new RealTuple(windds, new double[] {fd, fs}),
                    new Real(red, u),
                    new Real(green, v)
                  });
        } else {
          tuple =
              new Tuple(
                  new Data[] {
                    new Real(lon, 10.0 * u),
                    new Real(lat, 10.0 * v - 40.0),
                    new RealTuple(windxy, new double[] {fx, fy}),
                    new Real(red, u),
                    new Real(green, v)
                  });
        }

        // construct reference for wind record
        refs[k] = new DataReferenceImpl("ref_" + k);
        refs[k].setData(tuple);

        // link wind record to display via BarbManipulationRendererJ3D
        // so user can change barb by dragging it
        // drag with right mouse button and shift to change direction
        // drag with right mouse button and no shift to change speed
        BarbManipulationRendererJ3D renderer = new BarbManipulationRendererJ3D();
        renderer.setKnotsConvert(true);
        display.addReferences(renderer, refs[k]);

        // link wind record to a CellImpl that will listen for changes
        // and print them
        WindGetterJ3D cell = new WindGetterJ3D(flow_control, refs[k]);
        cell.addReference(refs[k]);

        k++;
      }
    }

    // instead of linking the wind record "DataReferenceImpl refs" to
    // the WindGetterJ3Ds, you can have some user interface event (e.g.,
    // the user clicks on "DONE") trigger code that does a getData() on
    // all the refs and stores the records in a file.

    // create JFrame (i.e., a window) for display and slider
    JFrame frame = new JFrame("test BarbManipulationRendererJ3D");
    frame.addWindowListener(
        new WindowAdapter() {
          public void windowClosing(WindowEvent e) {
            System.exit(0);
          }
        });

    // create JPanel in JFrame
    JPanel panel = new JPanel();
    panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));
    panel.setAlignmentY(JPanel.TOP_ALIGNMENT);
    panel.setAlignmentX(JPanel.LEFT_ALIGNMENT);
    frame.getContentPane().add(panel);

    // add display to JPanel
    panel.add(display.getComponent());

    // set size of JFrame and make it visible
    frame.setSize(500, 500);
    frame.setVisible(true);
  }
Beispiel #10
0
 // returns angle of dy/dx as a value from 0...2PI
 private double atan3(double dy, double dx) {
   double a = Math.atan2(dy, dx);
   if (a < 0) a = (Math.PI * 2.0) + a;
   return a;
 }