示例#1
0
 /**
  * Copy numbytes from src to dst. Assumption either the ranges are non overlapping, or src >= dst
  * + 4. Also, src and dst are 4 byte aligned and numBytes is a multiple of 4.
  *
  * @param dst the destination addr
  * @param src the source addr
  * @param numBytes the number of bytes top copy
  */
 @Inline
 public static void aligned32Copy(Address dst, Address src, Offset numBytes) {
   if (USE_NATIVE && numBytes.sGT(Offset.fromIntSignExtend(NATIVE_THRESHOLD))) {
     memcopy(dst, src, numBytes.toWord().toExtent());
   } else {
     if (VM.BuildFor64Addr) {
       Word wordMask = Word.one().lsh(LOG_BYTES_IN_ADDRESS).minus(Word.one());
       Word srcAlignment = src.toWord().and(wordMask);
       if (srcAlignment.EQ(dst.toWord().and(wordMask))) {
         Offset i = Offset.zero();
         if (srcAlignment.EQ(Word.fromIntZeroExtend(BYTES_IN_INT))) {
           dst.store(src.loadInt(i), i);
           i = i.plus(BYTES_IN_INT);
         }
         Word endAlignment =
             srcAlignment.plus(numBytes).and(Word.fromIntSignExtend(BYTES_IN_ADDRESS - 1));
         numBytes = numBytes.minus(endAlignment.toOffset());
         for (; i.sLT(numBytes); i = i.plus(BYTES_IN_ADDRESS)) {
           dst.store(src.loadWord(i), i);
         }
         if (!endAlignment.isZero()) {
           dst.store(src.loadInt(i), i);
         }
         return;
       }
     }
     // normal case: 32 bit or (64 bit not aligned)
     for (Offset i = Offset.zero(); i.sLT(numBytes); i = i.plus(BYTES_IN_INT)) {
       dst.store(src.loadInt(i), i);
     }
   }
 }
示例#2
0
  @Inline
  @Uninterruptible
  private static Word biasBitsToThinBits(Word bits) {
    int lockOwner = getLockOwner(bits);

    Word changed = bits.and(TL_UNLOCK_MASK).or(TL_STAT_THIN);

    if (lockOwner != 0) {
      int recCount = getRecCount(bits);
      changed =
          changed
              .or(Word.fromIntZeroExtend(lockOwner))
              .or(Word.fromIntZeroExtend(recCount - 1).lsh(TL_LOCK_COUNT_SHIFT));
    }

    return changed;
  }
 /**
  * Copy copyBytes from src to dst. Assumption: either the ranges are non overlapping, or {@code
  * src >= dst + 4}. Also, src and dst are 4 byte aligned and numBytes is a multiple of 4.
  *
  * @param dst the destination addr
  * @param src the source addr
  * @param copyBytes the number of bytes top copy
  */
 public static void aligned32Copy(Address dst, Address src, int copyBytes) {
   if (VM.VerifyAssertions) {
     VM._assert(copyBytes >= 0);
     VM._assert((copyBytes & (BYTES_IN_INT - 1)) == 0);
     VM._assert(src.toWord().and(Word.fromIntZeroExtend(BYTES_IN_INT - 1)).isZero());
     VM._assert(dst.toWord().and(Word.fromIntZeroExtend(BYTES_IN_INT - 1)).isZero());
     VM._assert(src.plus(copyBytes).LE(dst) || src.GE(dst.plus(BYTES_IN_INT)));
   }
   if (USE_NATIVE && copyBytes > NATIVE_THRESHOLD) {
     memcopy(dst, src, copyBytes);
   } else {
     Offset numBytes = Offset.fromIntSignExtend(copyBytes);
     if (BYTES_IN_COPY == 8 && copyBytes != 0) {
       Word wordMask = Word.fromIntZeroExtend(BYTES_IN_COPY - 1);
       Word srcAlignment = src.toWord().and(wordMask);
       if (srcAlignment.EQ(dst.toWord().and(wordMask))) {
         Offset i = Offset.zero();
         if (srcAlignment.EQ(Word.fromIntZeroExtend(BYTES_IN_INT))) {
           copy4Bytes(dst.plus(i), src.plus(i));
           i = i.plus(BYTES_IN_INT);
         }
         Word endAlignment = srcAlignment.plus(numBytes).and(wordMask);
         numBytes = numBytes.minus(endAlignment.toOffset());
         for (; i.sLT(numBytes); i = i.plus(BYTES_IN_COPY)) {
           copy8Bytes(dst.plus(i), src.plus(i));
         }
         if (!endAlignment.isZero()) {
           copy4Bytes(dst.plus(i), src.plus(i));
         }
         return;
       }
     }
     // normal case: 32 bit or (64 bit not aligned)
     for (Offset i = Offset.zero(); i.sLT(numBytes); i = i.plus(BYTES_IN_INT)) {
       copy4Bytes(dst.plus(i), src.plus(i));
     }
   }
 }
示例#4
0
 @NoInline
 @NoNullCheck
 @Unpreemptible
 public static void unlock(Object o, Offset lockOffset) {
   Word threadId = Word.fromIntZeroExtend(RVMThread.getCurrentThread().getLockingId());
   for (int cnt = 0; ; cnt++) {
     Word old = Magic.getWordAtOffset(o, lockOffset);
     Word stat = old.and(TL_STAT_MASK);
     if (stat.EQ(TL_STAT_BIASABLE)) {
       Word id = old.and(TL_THREAD_ID_MASK);
       if (id.EQ(threadId)) {
         if (old.and(TL_LOCK_COUNT_MASK).isZero()) {
           RVMThread.raiseIllegalMonitorStateException(
               "biased unlocking: we own this object but the count is already zero", o);
         }
         setDedicatedU16(o, lockOffset, old.minus(TL_LOCK_COUNT_UNIT));
         return;
       } else {
         RVMThread.raiseIllegalMonitorStateException(
             "biased unlocking: we don't own this object", o);
       }
     } else if (stat.EQ(TL_STAT_THIN)) {
       Magic.sync();
       Word id = old.and(TL_THREAD_ID_MASK);
       if (id.EQ(threadId)) {
         Word changed;
         if (old.and(TL_LOCK_COUNT_MASK).isZero()) {
           changed = old.and(TL_UNLOCK_MASK).or(TL_STAT_THIN);
         } else {
           changed = old.minus(TL_LOCK_COUNT_UNIT);
         }
         if (Synchronization.tryCompareAndSwap(o, lockOffset, old, changed)) {
           return;
         }
       } else {
         if (false) {
           VM.sysWriteln("threadId = ", threadId);
           VM.sysWriteln("id = ", id);
         }
         RVMThread.raiseIllegalMonitorStateException(
             "thin unlocking: we don't own this object", o);
       }
     } else {
       if (VM.VerifyAssertions) VM._assert(stat.EQ(TL_STAT_FAT));
       // fat unlock
       Lock.getLock(getLockIndex(old)).unlockHeavy(o);
       return;
     }
   }
 }
示例#5
0
 @Inline
 @Unpreemptible
 public static boolean attemptToMarkInflated(
     Object o, Offset lockOffset, Word oldLockWord, int lockId, int cnt) {
   if (VM.VerifyAssertions) VM._assert(oldLockWord.and(TL_STAT_MASK).NE(TL_STAT_FAT));
   if (false) VM.sysWriteln("attemptToMarkInflated with oldLockWord = ", oldLockWord);
   // what this needs to do:
   // 1) if the lock is thin, it's just a CAS
   // 2) if the lock is unbiased, CAS in the inflation
   // 3) if the lock is biased in our favor, store the lock without CAS
   // 4) if the lock is biased but to someone else, enter the pair handshake
   //    to unbias it and install the inflated lock
   Word changed =
       TL_STAT_FAT
           .or(Word.fromIntZeroExtend(lockId).lsh(TL_LOCK_ID_SHIFT))
           .or(oldLockWord.and(TL_UNLOCK_MASK));
   if (false && oldLockWord.and(TL_STAT_MASK).EQ(TL_STAT_THIN))
     VM.sysWriteln(
         "obj = ",
         Magic.objectAsAddress(o),
         ", old = ",
         oldLockWord,
         ", owner = ",
         getLockOwner(oldLockWord),
         ", rec = ",
         getLockOwner(oldLockWord) == 0 ? 0 : getRecCount(oldLockWord),
         ", changed = ",
         changed,
         ", lockId = ",
         lockId);
   if (false) VM.sysWriteln("changed = ", changed);
   if (oldLockWord.and(TL_STAT_MASK).EQ(TL_STAT_THIN)) {
     if (false) VM.sysWriteln("it's thin, inflating the easy way.");
     return Synchronization.tryCompareAndSwap(o, lockOffset, oldLockWord, changed);
   } else {
     return casFromBiased(o, lockOffset, oldLockWord, changed, cnt);
   }
 }
示例#6
0
/** Each instance of this class corresponds to one explicitly managed large object space. */
@Uninterruptible
public final class LargeObjectSpace extends BaseLargeObjectSpace {

  /**
   * **************************************************************************
   *
   * <p>Class variables
   */
  public static final int LOCAL_GC_BITS_REQUIRED = 2;

  public static final int GLOBAL_GC_BITS_REQUIRED = 0;
  private static final Word MARK_BIT = Word.one(); // ...01
  private static final Word NURSERY_BIT = Word.fromIntZeroExtend(2); // ...10
  private static final Word LOS_BIT_MASK = Word.fromIntZeroExtend(3); // ...11

  /**
   * **************************************************************************
   *
   * <p>Instance variables
   */
  private Word markState;

  private boolean inNurseryGC;
  private final Treadmill treadmill;

  /**
   * **************************************************************************
   *
   * <p>Initialization
   */

  /**
   * The caller specifies the region of virtual memory to be used for this space. If this region
   * conflicts with an existing space, then the constructor will fail.
   *
   * @param name The name of this space (used when printing error messages etc)
   * @param pageBudget The number of pages this space may consume before consulting the plan
   * @param vmRequest An object describing the virtual memory requested.
   */
  public LargeObjectSpace(String name, int pageBudget, VMRequest vmRequest) {
    super(name, pageBudget, vmRequest);
    treadmill = new Treadmill(LOG_BYTES_IN_PAGE, true);
    markState = Word.zero();
  }

  /**
   * **************************************************************************
   *
   * <p>Collection
   */

  /**
   * Prepare for a new collection increment. For the mark-sweep collector we must flip the state of
   * the mark bit between collections.
   */
  public void prepare(boolean fullHeap) {
    if (fullHeap) {
      if (VM.VERIFY_ASSERTIONS) {
        VM.assertions._assert(treadmill.fromSpaceEmpty());
      }
      markState = MARK_BIT.minus(markState);
    }
    treadmill.flip(fullHeap);
    inNurseryGC = !fullHeap;
  }

  /**
   * A new collection increment has completed. For the mark-sweep collector this means we can
   * perform the sweep phase.
   */
  public void release(boolean fullHeap) {
    // sweep the large objects
    sweepLargePages(true); // sweep the nursery
    if (VM.VERIFY_ASSERTIONS) VM.assertions._assert(treadmill.nurseryEmpty());
    if (fullHeap) sweepLargePages(false); // sweep the mature space
  }

  /** Sweep through the large pages, releasing all superpages on the "from space" treadmill. */
  private void sweepLargePages(boolean sweepNursery) {
    while (true) {
      Address cell = sweepNursery ? treadmill.popNursery() : treadmill.pop();
      if (cell.isZero()) break;
      release(getSuperPage(cell));
    }
    if (VM.VERIFY_ASSERTIONS)
      VM.assertions._assert(sweepNursery ? treadmill.nurseryEmpty() : treadmill.fromSpaceEmpty());
  }

  /**
   * Release a group of pages that were allocated together.
   *
   * @param first The first page in the group of pages that were allocated together.
   */
  @Inline
  public void release(Address first) {
    ((FreeListPageResource) pr).releasePages(first);
  }

  /**
   * **************************************************************************
   *
   * <p>Object processing and tracing
   */

  /**
   * Trace a reference to an object under a mark sweep collection policy. If the object header is
   * not already marked, mark the object in either the bitmap or by moving it off the treadmill, and
   * enqueue the object for subsequent processing. The object is marked as (an atomic) side-effect
   * of checking whether already marked.
   *
   * @param trace The trace being conducted.
   * @param object The object to be traced.
   * @return The object (there is no object forwarding in this collector, so we always return the
   *     same object: this could be a void method but for compliance to a more general interface).
   */
  @Inline
  public ObjectReference traceObject(TransitiveClosure trace, ObjectReference object) {
    boolean nurseryObject = isInNursery(object);
    if (!inNurseryGC || nurseryObject) {
      if (testAndMark(object, markState)) {
        internalMarkObject(object, nurseryObject);
        trace.processNode(object);
      }
    }
    return object;
  }

  /**
   * @param object The object in question
   * @return True if this object is known to be live (i.e. it is marked)
   */
  @Inline
  public boolean isLive(ObjectReference object) {
    return testMarkBit(object, markState);
  }

  /**
   * An object has been marked (identifiged as live). Large objects are added to the to-space
   * treadmill, while all other objects will have a mark bit set in the superpage header.
   *
   * @param object The object which has been marked.
   */
  @Inline
  private void internalMarkObject(ObjectReference object, boolean nurseryObject) {

    Address cell = VM.objectModel.objectStartRef(object);
    Address node = Treadmill.midPayloadToNode(cell);
    treadmill.copy(node, nurseryObject);
  }

  /**
   * **************************************************************************
   *
   * <p>Header manipulation
   */

  /**
   * Perform any required initialization of the GC portion of the header.
   *
   * @param object the object ref to the storage to be initialized
   * @param alloc is this initialization occuring due to (initial) allocation (true) or due to
   *     copying (false)?
   */
  @Inline
  public void initializeHeader(ObjectReference object, boolean alloc) {
    Word oldValue = VM.objectModel.readAvailableBitsWord(object);
    Word newValue = oldValue.and(LOS_BIT_MASK.not()).or(markState);
    if (alloc) newValue = newValue.or(NURSERY_BIT);
    if (Plan.NEEDS_LOG_BIT_IN_HEADER) newValue = newValue.or(Plan.UNLOGGED_BIT);
    VM.objectModel.writeAvailableBitsWord(object, newValue);
    Address cell = VM.objectModel.objectStartRef(object);
    treadmill.addToTreadmill(Treadmill.midPayloadToNode(cell), alloc);
  }

  /**
   * Atomically attempt to set the mark bit of an object. Return true if successful, false if the
   * mark bit was already set.
   *
   * @param object The object whose mark bit is to be written
   * @param value The value to which the mark bit will be set
   */
  @Inline
  private boolean testAndMark(ObjectReference object, Word value) {
    Word oldValue, markBit;
    do {
      oldValue = VM.objectModel.prepareAvailableBits(object);
      markBit = oldValue.and(inNurseryGC ? LOS_BIT_MASK : MARK_BIT);
      if (markBit.EQ(value)) return false;
    } while (!VM.objectModel.attemptAvailableBits(
        object, oldValue, oldValue.and(LOS_BIT_MASK.not()).or(value)));
    return true;
  }

  /**
   * Return true if the mark bit for an object has the given value.
   *
   * @param object The object whose mark bit is to be tested
   * @param value The value against which the mark bit will be tested
   * @return True if the mark bit for the object has the given value.
   */
  @Inline
  private boolean testMarkBit(ObjectReference object, Word value) {
    return VM.objectModel.readAvailableBitsWord(object).and(MARK_BIT).EQ(value);
  }

  /**
   * Return true if the object is in the logical nursery
   *
   * @param object The object whose status is to be tested
   * @return True if the object is in the logical nursery
   */
  @Inline
  private boolean isInNursery(ObjectReference object) {
    return VM.objectModel.readAvailableBitsWord(object).and(NURSERY_BIT).EQ(NURSERY_BIT);
  }

  /**
   * Return the size of the per-superpage header required by this system. In this case it is just
   * the underlying superpage header size.
   *
   * @return The size of the per-superpage header required by this system.
   */
  @Inline
  protected int superPageHeaderSize() {
    return Treadmill.headerSize();
  }

  /**
   * Return the size of the per-cell header for cells of a given class size.
   *
   * @return The size of the per-cell header for cells of a given class size.
   */
  @Inline
  protected int cellHeaderSize() {
    return 0;
  }

  /**
   * This is the treadmill used by the large object space.
   *
   * <p>Note that it depends on the specific local in use whether this is being used.
   *
   * @return The treadmill associated with this large object space.
   */
  public Treadmill getTreadmill() {
    return this.treadmill;
  }
}
示例#7
0
  @NoInline
  @NoNullCheck
  @Unpreemptible
  public static void lock(Object o, Offset lockOffset) {
    if (STATS) fastLocks++;

    Word threadId = Word.fromIntZeroExtend(RVMThread.getCurrentThread().getLockingId());

    for (int cnt = 0; ; cnt++) {
      Word old = Magic.getWordAtOffset(o, lockOffset);
      Word stat = old.and(TL_STAT_MASK);
      boolean tryToInflate = false;
      if (stat.EQ(TL_STAT_BIASABLE)) {
        Word id = old.and(TL_THREAD_ID_MASK);
        if (id.isZero()) {
          if (ENABLE_BIASED_LOCKING) {
            // lock is unbiased, bias it in our favor and grab it
            if (Synchronization.tryCompareAndSwap(
                o, lockOffset, old, old.or(threadId).plus(TL_LOCK_COUNT_UNIT))) {
              Magic.isync();
              return;
            }
          } else {
            // lock is unbiased but biasing is NOT allowed, so turn it into
            // a thin lock
            if (Synchronization.tryCompareAndSwap(
                o, lockOffset, old, old.or(threadId).or(TL_STAT_THIN))) {
              Magic.isync();
              return;
            }
          }
        } else if (id.EQ(threadId)) {
          // lock is biased in our favor
          Word changed = old.plus(TL_LOCK_COUNT_UNIT);
          if (!changed.and(TL_LOCK_COUNT_MASK).isZero()) {
            setDedicatedU16(o, lockOffset, changed);
            return;
          } else {
            tryToInflate = true;
          }
        } else {
          if (casFromBiased(o, lockOffset, old, biasBitsToThinBits(old), cnt)) {
            continue; // don't spin, since it's thin now
          }
        }
      } else if (stat.EQ(TL_STAT_THIN)) {
        Word id = old.and(TL_THREAD_ID_MASK);
        if (id.isZero()) {
          if (Synchronization.tryCompareAndSwap(o, lockOffset, old, old.or(threadId))) {
            Magic.isync();
            return;
          }
        } else if (id.EQ(threadId)) {
          Word changed = old.plus(TL_LOCK_COUNT_UNIT);
          if (changed.and(TL_LOCK_COUNT_MASK).isZero()) {
            tryToInflate = true;
          } else if (Synchronization.tryCompareAndSwap(o, lockOffset, old, changed)) {
            Magic.isync();
            return;
          }
        } else if (cnt > retryLimit) {
          tryToInflate = true;
        }
      } else {
        if (VM.VerifyAssertions) VM._assert(stat.EQ(TL_STAT_FAT));
        // lock is fat.  contend on it.
        if (Lock.getLock(getLockIndex(old)).lockHeavy(o)) {
          return;
        }
      }

      if (tryToInflate) {
        if (STATS) slowLocks++;
        // the lock is not fat, is owned by someone else, or else the count wrapped.
        // attempt to inflate it (this may fail, in which case we'll just harmlessly
        // loop around) and lock it (may also fail, if we get the wrong lock).  if it
        // succeeds, we're done.
        // NB: this calls into our attemptToMarkInflated() method, which will do the
        // Right Thing if the lock is biased to someone else.
        if (inflateAndLock(o, lockOffset)) {
          return;
        }
      } else {
        RVMThread.yield();
      }
    }
  }
示例#8
0
 public static boolean isPageAligned(Address addr) {
   Word pagesizeMask = Word.fromIntZeroExtend(getPagesize() - 1);
   return addr.toWord().and(pagesizeMask).isZero();
 }
示例#9
0
 public static boolean isPageMultiple(Offset val) {
   Word pagesizeMask = Word.fromIntZeroExtend(getPagesize() - 1);
   return val.toWord().and(pagesizeMask).isZero();
 }
  /**
   * Low level copy of <code>copyBytes</code> bytes from <code>src[srcPos]</code> to <code>
   * dst[dstPos]</code>.
   *
   * <p>Assumption: <code>src != dst || (srcPos >= dstPos)</code> and element size is 2 bytes.
   *
   * @param dstPtr The destination start address
   * @param srcPtr The source start address
   * @param copyBytes The number of bytes to be copied
   */
  public static void aligned16Copy(Address dstPtr, Address srcPtr, int copyBytes) {
    if (USE_NATIVE && copyBytes > NATIVE_THRESHOLD) {
      memcopy(dstPtr, srcPtr, copyBytes);
    } else {
      if (copyBytes >= BYTES_IN_COPY
          && (srcPtr.toWord().and(Word.fromIntZeroExtend(BYTES_IN_COPY - 1))
              == (dstPtr.toWord().and(Word.fromIntZeroExtend(BYTES_IN_COPY - 1))))) {
        // relative alignment is the same
        Address endPtr = srcPtr.plus(copyBytes);
        Address wordEndPtr =
            endPtr.toWord().and(Word.fromIntZeroExtend(BYTES_IN_COPY - 1).not()).toAddress();

        if (BYTES_IN_COPY == 8) {
          if (srcPtr.toWord().and(Word.fromIntZeroExtend(2)).NE(Word.zero())) {
            copy2Bytes(dstPtr, srcPtr);
            srcPtr = srcPtr.plus(2);
            dstPtr = dstPtr.plus(2);
          }
          if (srcPtr.toWord().and(Word.fromIntZeroExtend(4)).NE(Word.zero())) {
            copy4Bytes(dstPtr, srcPtr);
            srcPtr = srcPtr.plus(4);
            dstPtr = dstPtr.plus(4);
          }
        } else {
          if (srcPtr.toWord().and(Word.fromIntZeroExtend(2)).NE(Word.zero())) {
            copy2Bytes(dstPtr, srcPtr);
            srcPtr = srcPtr.plus(2);
            dstPtr = dstPtr.plus(2);
          }
        }
        while (srcPtr.LT(wordEndPtr)) {
          if (BYTES_IN_COPY == 8) {
            copy8Bytes(dstPtr, srcPtr);
          } else {
            copy4Bytes(dstPtr, srcPtr);
          }
          srcPtr = srcPtr.plus(BYTES_IN_COPY);
          dstPtr = dstPtr.plus(BYTES_IN_COPY);
        }
        // if(VM.VerifyAssertions) VM._assert(wordEndPtr.EQ(srcPtr));
        if (BYTES_IN_COPY == 8) {
          if (endPtr.toWord().and(Word.fromIntZeroExtend(4)).NE(Word.zero())) {
            copy4Bytes(dstPtr, srcPtr);
            srcPtr = srcPtr.plus(4);
            dstPtr = dstPtr.plus(4);
          }
          if (endPtr.toWord().and(Word.fromIntZeroExtend(2)).NE(Word.zero())) {
            copy2Bytes(dstPtr, srcPtr);
          }
        } else {
          if (endPtr.toWord().and(Word.fromIntZeroExtend(2)).NE(Word.zero())) {
            copy2Bytes(dstPtr, srcPtr);
          }
        }
      } else {
        Address endPtr = srcPtr.plus(copyBytes);
        while (srcPtr.LT(endPtr)) {
          copy2Bytes(dstPtr, srcPtr);
          srcPtr = srcPtr.plus(2);
          dstPtr = dstPtr.plus(2);
        }
      }
    }
  }