/** * Copy numbytes from src to dst. Assumption either the ranges are non overlapping, or src >= dst * + 4. Also, src and dst are 4 byte aligned and numBytes is a multiple of 4. * * @param dst the destination addr * @param src the source addr * @param numBytes the number of bytes top copy */ @Inline public static void aligned32Copy(Address dst, Address src, Offset numBytes) { if (USE_NATIVE && numBytes.sGT(Offset.fromIntSignExtend(NATIVE_THRESHOLD))) { memcopy(dst, src, numBytes.toWord().toExtent()); } else { if (VM.BuildFor64Addr) { Word wordMask = Word.one().lsh(LOG_BYTES_IN_ADDRESS).minus(Word.one()); Word srcAlignment = src.toWord().and(wordMask); if (srcAlignment.EQ(dst.toWord().and(wordMask))) { Offset i = Offset.zero(); if (srcAlignment.EQ(Word.fromIntZeroExtend(BYTES_IN_INT))) { dst.store(src.loadInt(i), i); i = i.plus(BYTES_IN_INT); } Word endAlignment = srcAlignment.plus(numBytes).and(Word.fromIntSignExtend(BYTES_IN_ADDRESS - 1)); numBytes = numBytes.minus(endAlignment.toOffset()); for (; i.sLT(numBytes); i = i.plus(BYTES_IN_ADDRESS)) { dst.store(src.loadWord(i), i); } if (!endAlignment.isZero()) { dst.store(src.loadInt(i), i); } return; } } // normal case: 32 bit or (64 bit not aligned) for (Offset i = Offset.zero(); i.sLT(numBytes); i = i.plus(BYTES_IN_INT)) { dst.store(src.loadInt(i), i); } } }
@Inline @Uninterruptible private static Word biasBitsToThinBits(Word bits) { int lockOwner = getLockOwner(bits); Word changed = bits.and(TL_UNLOCK_MASK).or(TL_STAT_THIN); if (lockOwner != 0) { int recCount = getRecCount(bits); changed = changed .or(Word.fromIntZeroExtend(lockOwner)) .or(Word.fromIntZeroExtend(recCount - 1).lsh(TL_LOCK_COUNT_SHIFT)); } return changed; }
/** * Copy copyBytes from src to dst. Assumption: either the ranges are non overlapping, or {@code * src >= dst + 4}. Also, src and dst are 4 byte aligned and numBytes is a multiple of 4. * * @param dst the destination addr * @param src the source addr * @param copyBytes the number of bytes top copy */ public static void aligned32Copy(Address dst, Address src, int copyBytes) { if (VM.VerifyAssertions) { VM._assert(copyBytes >= 0); VM._assert((copyBytes & (BYTES_IN_INT - 1)) == 0); VM._assert(src.toWord().and(Word.fromIntZeroExtend(BYTES_IN_INT - 1)).isZero()); VM._assert(dst.toWord().and(Word.fromIntZeroExtend(BYTES_IN_INT - 1)).isZero()); VM._assert(src.plus(copyBytes).LE(dst) || src.GE(dst.plus(BYTES_IN_INT))); } if (USE_NATIVE && copyBytes > NATIVE_THRESHOLD) { memcopy(dst, src, copyBytes); } else { Offset numBytes = Offset.fromIntSignExtend(copyBytes); if (BYTES_IN_COPY == 8 && copyBytes != 0) { Word wordMask = Word.fromIntZeroExtend(BYTES_IN_COPY - 1); Word srcAlignment = src.toWord().and(wordMask); if (srcAlignment.EQ(dst.toWord().and(wordMask))) { Offset i = Offset.zero(); if (srcAlignment.EQ(Word.fromIntZeroExtend(BYTES_IN_INT))) { copy4Bytes(dst.plus(i), src.plus(i)); i = i.plus(BYTES_IN_INT); } Word endAlignment = srcAlignment.plus(numBytes).and(wordMask); numBytes = numBytes.minus(endAlignment.toOffset()); for (; i.sLT(numBytes); i = i.plus(BYTES_IN_COPY)) { copy8Bytes(dst.plus(i), src.plus(i)); } if (!endAlignment.isZero()) { copy4Bytes(dst.plus(i), src.plus(i)); } return; } } // normal case: 32 bit or (64 bit not aligned) for (Offset i = Offset.zero(); i.sLT(numBytes); i = i.plus(BYTES_IN_INT)) { copy4Bytes(dst.plus(i), src.plus(i)); } } }
@NoInline @NoNullCheck @Unpreemptible public static void unlock(Object o, Offset lockOffset) { Word threadId = Word.fromIntZeroExtend(RVMThread.getCurrentThread().getLockingId()); for (int cnt = 0; ; cnt++) { Word old = Magic.getWordAtOffset(o, lockOffset); Word stat = old.and(TL_STAT_MASK); if (stat.EQ(TL_STAT_BIASABLE)) { Word id = old.and(TL_THREAD_ID_MASK); if (id.EQ(threadId)) { if (old.and(TL_LOCK_COUNT_MASK).isZero()) { RVMThread.raiseIllegalMonitorStateException( "biased unlocking: we own this object but the count is already zero", o); } setDedicatedU16(o, lockOffset, old.minus(TL_LOCK_COUNT_UNIT)); return; } else { RVMThread.raiseIllegalMonitorStateException( "biased unlocking: we don't own this object", o); } } else if (stat.EQ(TL_STAT_THIN)) { Magic.sync(); Word id = old.and(TL_THREAD_ID_MASK); if (id.EQ(threadId)) { Word changed; if (old.and(TL_LOCK_COUNT_MASK).isZero()) { changed = old.and(TL_UNLOCK_MASK).or(TL_STAT_THIN); } else { changed = old.minus(TL_LOCK_COUNT_UNIT); } if (Synchronization.tryCompareAndSwap(o, lockOffset, old, changed)) { return; } } else { if (false) { VM.sysWriteln("threadId = ", threadId); VM.sysWriteln("id = ", id); } RVMThread.raiseIllegalMonitorStateException( "thin unlocking: we don't own this object", o); } } else { if (VM.VerifyAssertions) VM._assert(stat.EQ(TL_STAT_FAT)); // fat unlock Lock.getLock(getLockIndex(old)).unlockHeavy(o); return; } } }
@Inline @Unpreemptible public static boolean attemptToMarkInflated( Object o, Offset lockOffset, Word oldLockWord, int lockId, int cnt) { if (VM.VerifyAssertions) VM._assert(oldLockWord.and(TL_STAT_MASK).NE(TL_STAT_FAT)); if (false) VM.sysWriteln("attemptToMarkInflated with oldLockWord = ", oldLockWord); // what this needs to do: // 1) if the lock is thin, it's just a CAS // 2) if the lock is unbiased, CAS in the inflation // 3) if the lock is biased in our favor, store the lock without CAS // 4) if the lock is biased but to someone else, enter the pair handshake // to unbias it and install the inflated lock Word changed = TL_STAT_FAT .or(Word.fromIntZeroExtend(lockId).lsh(TL_LOCK_ID_SHIFT)) .or(oldLockWord.and(TL_UNLOCK_MASK)); if (false && oldLockWord.and(TL_STAT_MASK).EQ(TL_STAT_THIN)) VM.sysWriteln( "obj = ", Magic.objectAsAddress(o), ", old = ", oldLockWord, ", owner = ", getLockOwner(oldLockWord), ", rec = ", getLockOwner(oldLockWord) == 0 ? 0 : getRecCount(oldLockWord), ", changed = ", changed, ", lockId = ", lockId); if (false) VM.sysWriteln("changed = ", changed); if (oldLockWord.and(TL_STAT_MASK).EQ(TL_STAT_THIN)) { if (false) VM.sysWriteln("it's thin, inflating the easy way."); return Synchronization.tryCompareAndSwap(o, lockOffset, oldLockWord, changed); } else { return casFromBiased(o, lockOffset, oldLockWord, changed, cnt); } }
/** Each instance of this class corresponds to one explicitly managed large object space. */ @Uninterruptible public final class LargeObjectSpace extends BaseLargeObjectSpace { /** * ************************************************************************** * * <p>Class variables */ public static final int LOCAL_GC_BITS_REQUIRED = 2; public static final int GLOBAL_GC_BITS_REQUIRED = 0; private static final Word MARK_BIT = Word.one(); // ...01 private static final Word NURSERY_BIT = Word.fromIntZeroExtend(2); // ...10 private static final Word LOS_BIT_MASK = Word.fromIntZeroExtend(3); // ...11 /** * ************************************************************************** * * <p>Instance variables */ private Word markState; private boolean inNurseryGC; private final Treadmill treadmill; /** * ************************************************************************** * * <p>Initialization */ /** * The caller specifies the region of virtual memory to be used for this space. If this region * conflicts with an existing space, then the constructor will fail. * * @param name The name of this space (used when printing error messages etc) * @param pageBudget The number of pages this space may consume before consulting the plan * @param vmRequest An object describing the virtual memory requested. */ public LargeObjectSpace(String name, int pageBudget, VMRequest vmRequest) { super(name, pageBudget, vmRequest); treadmill = new Treadmill(LOG_BYTES_IN_PAGE, true); markState = Word.zero(); } /** * ************************************************************************** * * <p>Collection */ /** * Prepare for a new collection increment. For the mark-sweep collector we must flip the state of * the mark bit between collections. */ public void prepare(boolean fullHeap) { if (fullHeap) { if (VM.VERIFY_ASSERTIONS) { VM.assertions._assert(treadmill.fromSpaceEmpty()); } markState = MARK_BIT.minus(markState); } treadmill.flip(fullHeap); inNurseryGC = !fullHeap; } /** * A new collection increment has completed. For the mark-sweep collector this means we can * perform the sweep phase. */ public void release(boolean fullHeap) { // sweep the large objects sweepLargePages(true); // sweep the nursery if (VM.VERIFY_ASSERTIONS) VM.assertions._assert(treadmill.nurseryEmpty()); if (fullHeap) sweepLargePages(false); // sweep the mature space } /** Sweep through the large pages, releasing all superpages on the "from space" treadmill. */ private void sweepLargePages(boolean sweepNursery) { while (true) { Address cell = sweepNursery ? treadmill.popNursery() : treadmill.pop(); if (cell.isZero()) break; release(getSuperPage(cell)); } if (VM.VERIFY_ASSERTIONS) VM.assertions._assert(sweepNursery ? treadmill.nurseryEmpty() : treadmill.fromSpaceEmpty()); } /** * Release a group of pages that were allocated together. * * @param first The first page in the group of pages that were allocated together. */ @Inline public void release(Address first) { ((FreeListPageResource) pr).releasePages(first); } /** * ************************************************************************** * * <p>Object processing and tracing */ /** * Trace a reference to an object under a mark sweep collection policy. If the object header is * not already marked, mark the object in either the bitmap or by moving it off the treadmill, and * enqueue the object for subsequent processing. The object is marked as (an atomic) side-effect * of checking whether already marked. * * @param trace The trace being conducted. * @param object The object to be traced. * @return The object (there is no object forwarding in this collector, so we always return the * same object: this could be a void method but for compliance to a more general interface). */ @Inline public ObjectReference traceObject(TransitiveClosure trace, ObjectReference object) { boolean nurseryObject = isInNursery(object); if (!inNurseryGC || nurseryObject) { if (testAndMark(object, markState)) { internalMarkObject(object, nurseryObject); trace.processNode(object); } } return object; } /** * @param object The object in question * @return True if this object is known to be live (i.e. it is marked) */ @Inline public boolean isLive(ObjectReference object) { return testMarkBit(object, markState); } /** * An object has been marked (identifiged as live). Large objects are added to the to-space * treadmill, while all other objects will have a mark bit set in the superpage header. * * @param object The object which has been marked. */ @Inline private void internalMarkObject(ObjectReference object, boolean nurseryObject) { Address cell = VM.objectModel.objectStartRef(object); Address node = Treadmill.midPayloadToNode(cell); treadmill.copy(node, nurseryObject); } /** * ************************************************************************** * * <p>Header manipulation */ /** * Perform any required initialization of the GC portion of the header. * * @param object the object ref to the storage to be initialized * @param alloc is this initialization occuring due to (initial) allocation (true) or due to * copying (false)? */ @Inline public void initializeHeader(ObjectReference object, boolean alloc) { Word oldValue = VM.objectModel.readAvailableBitsWord(object); Word newValue = oldValue.and(LOS_BIT_MASK.not()).or(markState); if (alloc) newValue = newValue.or(NURSERY_BIT); if (Plan.NEEDS_LOG_BIT_IN_HEADER) newValue = newValue.or(Plan.UNLOGGED_BIT); VM.objectModel.writeAvailableBitsWord(object, newValue); Address cell = VM.objectModel.objectStartRef(object); treadmill.addToTreadmill(Treadmill.midPayloadToNode(cell), alloc); } /** * Atomically attempt to set the mark bit of an object. Return true if successful, false if the * mark bit was already set. * * @param object The object whose mark bit is to be written * @param value The value to which the mark bit will be set */ @Inline private boolean testAndMark(ObjectReference object, Word value) { Word oldValue, markBit; do { oldValue = VM.objectModel.prepareAvailableBits(object); markBit = oldValue.and(inNurseryGC ? LOS_BIT_MASK : MARK_BIT); if (markBit.EQ(value)) return false; } while (!VM.objectModel.attemptAvailableBits( object, oldValue, oldValue.and(LOS_BIT_MASK.not()).or(value))); return true; } /** * Return true if the mark bit for an object has the given value. * * @param object The object whose mark bit is to be tested * @param value The value against which the mark bit will be tested * @return True if the mark bit for the object has the given value. */ @Inline private boolean testMarkBit(ObjectReference object, Word value) { return VM.objectModel.readAvailableBitsWord(object).and(MARK_BIT).EQ(value); } /** * Return true if the object is in the logical nursery * * @param object The object whose status is to be tested * @return True if the object is in the logical nursery */ @Inline private boolean isInNursery(ObjectReference object) { return VM.objectModel.readAvailableBitsWord(object).and(NURSERY_BIT).EQ(NURSERY_BIT); } /** * Return the size of the per-superpage header required by this system. In this case it is just * the underlying superpage header size. * * @return The size of the per-superpage header required by this system. */ @Inline protected int superPageHeaderSize() { return Treadmill.headerSize(); } /** * Return the size of the per-cell header for cells of a given class size. * * @return The size of the per-cell header for cells of a given class size. */ @Inline protected int cellHeaderSize() { return 0; } /** * This is the treadmill used by the large object space. * * <p>Note that it depends on the specific local in use whether this is being used. * * @return The treadmill associated with this large object space. */ public Treadmill getTreadmill() { return this.treadmill; } }
@NoInline @NoNullCheck @Unpreemptible public static void lock(Object o, Offset lockOffset) { if (STATS) fastLocks++; Word threadId = Word.fromIntZeroExtend(RVMThread.getCurrentThread().getLockingId()); for (int cnt = 0; ; cnt++) { Word old = Magic.getWordAtOffset(o, lockOffset); Word stat = old.and(TL_STAT_MASK); boolean tryToInflate = false; if (stat.EQ(TL_STAT_BIASABLE)) { Word id = old.and(TL_THREAD_ID_MASK); if (id.isZero()) { if (ENABLE_BIASED_LOCKING) { // lock is unbiased, bias it in our favor and grab it if (Synchronization.tryCompareAndSwap( o, lockOffset, old, old.or(threadId).plus(TL_LOCK_COUNT_UNIT))) { Magic.isync(); return; } } else { // lock is unbiased but biasing is NOT allowed, so turn it into // a thin lock if (Synchronization.tryCompareAndSwap( o, lockOffset, old, old.or(threadId).or(TL_STAT_THIN))) { Magic.isync(); return; } } } else if (id.EQ(threadId)) { // lock is biased in our favor Word changed = old.plus(TL_LOCK_COUNT_UNIT); if (!changed.and(TL_LOCK_COUNT_MASK).isZero()) { setDedicatedU16(o, lockOffset, changed); return; } else { tryToInflate = true; } } else { if (casFromBiased(o, lockOffset, old, biasBitsToThinBits(old), cnt)) { continue; // don't spin, since it's thin now } } } else if (stat.EQ(TL_STAT_THIN)) { Word id = old.and(TL_THREAD_ID_MASK); if (id.isZero()) { if (Synchronization.tryCompareAndSwap(o, lockOffset, old, old.or(threadId))) { Magic.isync(); return; } } else if (id.EQ(threadId)) { Word changed = old.plus(TL_LOCK_COUNT_UNIT); if (changed.and(TL_LOCK_COUNT_MASK).isZero()) { tryToInflate = true; } else if (Synchronization.tryCompareAndSwap(o, lockOffset, old, changed)) { Magic.isync(); return; } } else if (cnt > retryLimit) { tryToInflate = true; } } else { if (VM.VerifyAssertions) VM._assert(stat.EQ(TL_STAT_FAT)); // lock is fat. contend on it. if (Lock.getLock(getLockIndex(old)).lockHeavy(o)) { return; } } if (tryToInflate) { if (STATS) slowLocks++; // the lock is not fat, is owned by someone else, or else the count wrapped. // attempt to inflate it (this may fail, in which case we'll just harmlessly // loop around) and lock it (may also fail, if we get the wrong lock). if it // succeeds, we're done. // NB: this calls into our attemptToMarkInflated() method, which will do the // Right Thing if the lock is biased to someone else. if (inflateAndLock(o, lockOffset)) { return; } } else { RVMThread.yield(); } } }
public static boolean isPageAligned(Address addr) { Word pagesizeMask = Word.fromIntZeroExtend(getPagesize() - 1); return addr.toWord().and(pagesizeMask).isZero(); }
public static boolean isPageMultiple(Offset val) { Word pagesizeMask = Word.fromIntZeroExtend(getPagesize() - 1); return val.toWord().and(pagesizeMask).isZero(); }
/** * Low level copy of <code>copyBytes</code> bytes from <code>src[srcPos]</code> to <code> * dst[dstPos]</code>. * * <p>Assumption: <code>src != dst || (srcPos >= dstPos)</code> and element size is 2 bytes. * * @param dstPtr The destination start address * @param srcPtr The source start address * @param copyBytes The number of bytes to be copied */ public static void aligned16Copy(Address dstPtr, Address srcPtr, int copyBytes) { if (USE_NATIVE && copyBytes > NATIVE_THRESHOLD) { memcopy(dstPtr, srcPtr, copyBytes); } else { if (copyBytes >= BYTES_IN_COPY && (srcPtr.toWord().and(Word.fromIntZeroExtend(BYTES_IN_COPY - 1)) == (dstPtr.toWord().and(Word.fromIntZeroExtend(BYTES_IN_COPY - 1))))) { // relative alignment is the same Address endPtr = srcPtr.plus(copyBytes); Address wordEndPtr = endPtr.toWord().and(Word.fromIntZeroExtend(BYTES_IN_COPY - 1).not()).toAddress(); if (BYTES_IN_COPY == 8) { if (srcPtr.toWord().and(Word.fromIntZeroExtend(2)).NE(Word.zero())) { copy2Bytes(dstPtr, srcPtr); srcPtr = srcPtr.plus(2); dstPtr = dstPtr.plus(2); } if (srcPtr.toWord().and(Word.fromIntZeroExtend(4)).NE(Word.zero())) { copy4Bytes(dstPtr, srcPtr); srcPtr = srcPtr.plus(4); dstPtr = dstPtr.plus(4); } } else { if (srcPtr.toWord().and(Word.fromIntZeroExtend(2)).NE(Word.zero())) { copy2Bytes(dstPtr, srcPtr); srcPtr = srcPtr.plus(2); dstPtr = dstPtr.plus(2); } } while (srcPtr.LT(wordEndPtr)) { if (BYTES_IN_COPY == 8) { copy8Bytes(dstPtr, srcPtr); } else { copy4Bytes(dstPtr, srcPtr); } srcPtr = srcPtr.plus(BYTES_IN_COPY); dstPtr = dstPtr.plus(BYTES_IN_COPY); } // if(VM.VerifyAssertions) VM._assert(wordEndPtr.EQ(srcPtr)); if (BYTES_IN_COPY == 8) { if (endPtr.toWord().and(Word.fromIntZeroExtend(4)).NE(Word.zero())) { copy4Bytes(dstPtr, srcPtr); srcPtr = srcPtr.plus(4); dstPtr = dstPtr.plus(4); } if (endPtr.toWord().and(Word.fromIntZeroExtend(2)).NE(Word.zero())) { copy2Bytes(dstPtr, srcPtr); } } else { if (endPtr.toWord().and(Word.fromIntZeroExtend(2)).NE(Word.zero())) { copy2Bytes(dstPtr, srcPtr); } } } else { Address endPtr = srcPtr.plus(copyBytes); while (srcPtr.LT(endPtr)) { copy2Bytes(dstPtr, srcPtr); srcPtr = srcPtr.plus(2); dstPtr = dstPtr.plus(2); } } } }