public boolean setElevationProfile(
      PackedCoordinateSequence elev, boolean computed, boolean slopeLimit) {
    if (elev == null || elev.size() < 2) {
      return false;
    }

    if (slopeOverride && !computed) {
      return false;
    }

    elevationProfile = elev;

    // compute the various costs of the elevation changes
    double lengthMultiplier = ElevationUtils.getLengthMultiplierFromElevation(elev);
    if (Double.isNaN(lengthMultiplier)) {
      LOG.error("lengthMultiplier from elevation profile is NaN, setting to 1");
      lengthMultiplier = 1;
    }

    length *= lengthMultiplier;
    bicycleSafetyEffectiveLength *= lengthMultiplier;

    SlopeCosts costs = ElevationUtils.getSlopeCosts(elev, slopeLimit);
    slopeSpeedEffectiveLength = costs.slopeSpeedEffectiveLength;
    maxSlope = costs.maxSlope;
    slopeWorkCost = costs.slopeWorkCost;
    bicycleSafetyEffectiveLength += costs.slopeSafetyCost;
    flattened = costs.flattened;

    return costs.flattened;
  }
 public PackedCoordinateSequence getElevationProfile(double start, double end) {
   return ElevationUtils.getPartialElevationProfile(elevationProfile, start, end);
 }
  /**
   * return a StateEditor rather than a State so that we can make parking/mode switch modifications
   * for kiss-and-ride.
   */
  private StateEditor doTraverse(State s0, RoutingRequest options, TraverseMode traverseMode) {
    boolean walkingBike = options.walkingBike;
    boolean backWalkingBike = s0.isBackWalkingBike();
    TraverseMode backMode = s0.getBackMode();
    Edge backEdge = s0.getBackEdge();
    if (backEdge != null) {
      // No illegal U-turns.
      // NOTE(flamholz): we check both directions because both edges get a chance to decide
      // if they are the reverse of the other. Also, because it doesn't matter which direction
      // we are searching in - these traversals are always disallowed (they are U-turns in one
      // direction
      // or the other).
      // TODO profiling indicates that this is a hot spot.
      if (this.isReverseOf(backEdge) || backEdge.isReverseOf(this)) {
        return null;
      }
    }

    // Ensure we are actually walking, when walking a bike
    backWalkingBike &= TraverseMode.WALK.equals(backMode);
    walkingBike &= TraverseMode.WALK.equals(traverseMode);

    /* Check whether this street allows the current mode. If not and we are biking, attempt to walk the bike. */
    if (!canTraverse(options, traverseMode)) {
      if (traverseMode == TraverseMode.BICYCLE) {
        return doTraverse(s0, options.bikeWalkingOptions, TraverseMode.WALK);
      }
      return null;
    }

    // Automobiles have variable speeds depending on the edge type
    double speed = calculateSpeed(options, traverseMode, s0.getTimeInMillis());

    double time = getDistance() / speed;
    double weight;
    // TODO(flamholz): factor out this bike, wheelchair and walking specific logic to somewhere
    // central.
    if (options.wheelchairAccessible) {
      weight = getSlopeSpeedEffectiveLength() / speed;
    } else if (traverseMode.equals(TraverseMode.BICYCLE)) {
      time = getSlopeSpeedEffectiveLength() / speed;
      switch (options.optimize) {
        case SAFE:
          weight = bicycleSafetyFactor * getDistance() / speed;
          break;
        case GREENWAYS:
          weight = bicycleSafetyFactor * getDistance() / speed;
          if (bicycleSafetyFactor <= GREENWAY_SAFETY_FACTOR) {
            // greenways are treated as even safer than they really are
            weight *= 0.66;
          }
          break;
        case FLAT:
          /* see notes in StreetVertex on speed overhead */
          weight = getDistance() / speed + getSlopeWorkCostEffectiveLength();
          break;
        case QUICK:
          weight = getSlopeSpeedEffectiveLength() / speed;
          break;
        case TRIANGLE:
          double quick = getSlopeSpeedEffectiveLength();
          double safety = bicycleSafetyFactor * getDistance();
          // TODO This computation is not coherent with the one for FLAT
          double slope = getSlopeWorkCostEffectiveLength();
          weight =
              quick * options.triangleTimeFactor
                  + slope * options.triangleSlopeFactor
                  + safety * options.triangleSafetyFactor;
          weight /= speed;
          break;
        default:
          weight = getDistance() / speed;
      }
    } else {
      if (walkingBike) {
        // take slopes into account when walking bikes
        time = getSlopeSpeedEffectiveLength() / speed;
      }
      weight = time;
      if (traverseMode.equals(TraverseMode.WALK)) {
        // take slopes into account when walking
        // FIXME: this causes steep stairs to be avoided. see #1297.
        double costs = ElevationUtils.getWalkCostsForSlope(getDistance(), getMaxSlope());
        // as the cost walkspeed is assumed to be for 4.8km/h (= 1.333 m/sec) we need to adjust
        // for the walkspeed set by the user
        double elevationUtilsSpeed = 4.0 / 3.0;
        weight = costs * (elevationUtilsSpeed / speed);
        time =
            weight; // treat cost as time, as in the current model it actually is the same (this can
                    // be checked for maxSlope == 0)
        /*
        // debug code
        if(weight > 100){
            double timeflat = length / speed;
            System.out.format("line length: %.1f m, slope: %.3f ---> slope costs: %.1f , weight: %.1f , time (flat):  %.1f %n", length, elevationProfile.getMaxSlope(), costs, weight, timeflat);
        }
        */
      }
    }

    if (isStairs()) {
      weight *= options.stairsReluctance;
    } else {
      // TODO: this is being applied even when biking or driving.
      weight *= options.walkReluctance;
    }

    StateEditor s1 = s0.edit(this);
    s1.setBackMode(traverseMode);
    s1.setBackWalkingBike(walkingBike);

    /* Handle no through traffic areas. */
    if (this.isNoThruTraffic()) {
      // Record transition into no-through-traffic area.
      if (backEdge instanceof StreetEdge && !((StreetEdge) backEdge).isNoThruTraffic()) {
        s1.setEnteredNoThroughTrafficArea();
      }
      // If we transitioned into a no-through-traffic area at some point, check if we are exiting
      // it.
      if (s1.hasEnteredNoThroughTrafficArea()) {
        // Only Edges are marked as no-thru, but really we need to avoid creating dominant, pruned
        // states
        // on thru _Vertices_. This could certainly be improved somehow.
        for (StreetEdge se : Iterables.filter(s1.getVertex().getOutgoing(), StreetEdge.class)) {
          if (!se.isNoThruTraffic()) {
            // This vertex has at least one through-traffic edge. We can't dominate it with a
            // no-thru state.
            return null;
          }
        }
      }
    }

    /* Compute turn cost. */
    StreetEdge backPSE;
    if (backEdge != null && backEdge instanceof StreetEdge) {
      backPSE = (StreetEdge) backEdge;
      RoutingRequest backOptions =
          backWalkingBike ? s0.getOptions().bikeWalkingOptions : s0.getOptions();
      double backSpeed = backPSE.calculateSpeed(backOptions, backMode, s0.getTimeInMillis());
      final double realTurnCost; // Units are seconds.

      // Apply turn restrictions
      if (options.arriveBy && !canTurnOnto(backPSE, s0, backMode)) {
        return null;
      } else if (!options.arriveBy && !backPSE.canTurnOnto(this, s0, traverseMode)) {
        return null;
      }

      /*
       * This is a subtle piece of code. Turn costs are evaluated differently during
       * forward and reverse traversal. During forward traversal of an edge, the turn
       * *into* that edge is used, while during reverse traversal, the turn *out of*
       * the edge is used.
       *
       * However, over a set of edges, the turn costs must add up the same (for
       * general correctness and specifically for reverse optimization). This means
       * that during reverse traversal, we must also use the speed for the mode of
       * the backEdge, rather than of the current edge.
       */
      if (options.arriveBy && tov instanceof IntersectionVertex) { // arrive-by search
        IntersectionVertex traversedVertex = ((IntersectionVertex) tov);

        realTurnCost =
            backOptions
                .getIntersectionTraversalCostModel()
                .computeTraversalCost(
                    traversedVertex,
                    this,
                    backPSE,
                    backMode,
                    backOptions,
                    (float) speed,
                    (float) backSpeed);
      } else if (!options.arriveBy && fromv instanceof IntersectionVertex) { // depart-after search
        IntersectionVertex traversedVertex = ((IntersectionVertex) fromv);

        realTurnCost =
            options
                .getIntersectionTraversalCostModel()
                .computeTraversalCost(
                    traversedVertex,
                    backPSE,
                    this,
                    traverseMode,
                    options,
                    (float) backSpeed,
                    (float) speed);
      } else {
        // In case this is a temporary edge not connected to an IntersectionVertex
        LOG.debug("Not computing turn cost for edge {}", this);
        realTurnCost = 0;
      }

      if (!traverseMode.isDriving()) {
        s1.incrementWalkDistance(realTurnCost / 100); // just a tie-breaker
      }

      long turnTime = (long) Math.ceil(realTurnCost);
      time += turnTime;
      weight += options.turnReluctance * realTurnCost;
    }

    if (walkingBike || TraverseMode.BICYCLE.equals(traverseMode)) {
      if (!(backWalkingBike || TraverseMode.BICYCLE.equals(backMode))) {
        s1.incrementTimeInSeconds(options.bikeSwitchTime);
        s1.incrementWeight(options.bikeSwitchCost);
      }
    }

    if (!traverseMode.isDriving()) {
      s1.incrementWalkDistance(getDistance());
    }

    /* On the pre-kiss/pre-park leg, limit both walking and driving, either soft or hard. */
    int roundedTime = (int) Math.ceil(time);
    if (options.kissAndRide || options.parkAndRide) {
      if (options.arriveBy) {
        if (!s0.isCarParked()) s1.incrementPreTransitTime(roundedTime);
      } else {
        if (!s0.isEverBoarded()) s1.incrementPreTransitTime(roundedTime);
      }
      if (s1.isMaxPreTransitTimeExceeded(options)) {
        if (options.softPreTransitLimiting) {
          weight +=
              calculateOverageWeight(
                  s0.getPreTransitTime(),
                  s1.getPreTransitTime(),
                  options.maxPreTransitTime,
                  options.preTransitPenalty,
                  options.preTransitOverageRate);
        } else return null;
      }
    }

    /* Apply a strategy for avoiding walking too far, either soft (weight increases) or hard limiting (pruning). */
    if (s1.weHaveWalkedTooFar(options)) {

      // if we're using a soft walk-limit
      if (options.softWalkLimiting) {
        // just slap a penalty for the overage onto s1
        weight +=
            calculateOverageWeight(
                s0.getWalkDistance(),
                s1.getWalkDistance(),
                options.getMaxWalkDistance(),
                options.softWalkPenalty,
                options.softWalkOverageRate);
      } else {
        // else, it's a hard limit; bail
        LOG.debug("Too much walking. Bailing.");
        return null;
      }
    }

    s1.incrementTimeInSeconds(roundedTime);

    s1.incrementWeight(weight);

    return s1;
  }
示例#4
0
  public void testTriangle() {
    Coordinate c1 = new Coordinate(-122.575033, 45.456773);
    Coordinate c2 = new Coordinate(-122.576668, 45.451426);

    Vertex v1 = new Vertex("v1", c1, null);
    Vertex v2 = new Vertex("v2", c2, null);

    GeometryFactory factory = new GeometryFactory();
    LineString geometry = factory.createLineString(new Coordinate[] {c1, c2});

    double length = 650.0;

    PlainStreetEdge testStreet =
        new PlainStreetEdge(
            v1, v2, geometry, "Test Lane", length, StreetTraversalPermission.ALL, false);
    testStreet.setBicycleSafetyEffectiveLength(length * 0.74); // a safe street

    Coordinate[] profile =
        new Coordinate[] {
          new Coordinate(0, 0), // slope = 0.1
          new Coordinate(length / 2, length / 20.0),
          new Coordinate(length, 0) // slope = -0.1
        };
    PackedCoordinateSequence elev = new PackedCoordinateSequence.Double(profile);
    testStreet.setElevationProfile(elev);

    double trueLength = ElevationUtils.getLengthMultiplierFromElevation(elev) * length;
    testStreet.setSlopeSpeedEffectiveLength(trueLength); // normalize length

    SlopeCosts costs = ElevationUtils.getSlopeCosts(elev, "test");

    TraverseOptions options = new TraverseOptions(TraverseMode.BICYCLE);
    options.optimizeFor = OptimizeType.TRIANGLE;
    options.speed = 6.0;
    options.walkReluctance = 1;

    options.setTriangleSafetyFactor(0);
    options.setTriangleSlopeFactor(0);
    options.setTriangleTimeFactor(1);
    State startState = new State(v1, options);

    State result = testStreet.traverse(startState);
    double timeWeight = result.getWeight();
    double expectedSpeedWeight = trueLength / options.speed;
    assertEquals(expectedSpeedWeight, timeWeight);

    options.setTriangleSafetyFactor(0);
    options.setTriangleSlopeFactor(1);
    options.setTriangleTimeFactor(0);
    startState = new State(v1, options);
    result = testStreet.traverse(startState);
    double slopeWeight = result.getWeight();
    assertTrue(length * 1.5 / options.speed < slopeWeight);
    assertTrue(length * 1.5 * 10 / options.speed > slopeWeight);

    options.setTriangleSafetyFactor(1);
    options.setTriangleSlopeFactor(0);
    options.setTriangleTimeFactor(0);
    startState = new State(v1, options);
    result = testStreet.traverse(startState);
    double safetyWeight = result.getWeight();
    double slopeSafety = costs.slopeSafetyCost;
    double expectedSafetyWeight = (trueLength * 0.74 + slopeSafety) / options.speed;
    assertTrue(expectedSafetyWeight - safetyWeight < 0.00001);

    final double ONE_THIRD = 1 / 3.0;
    options.setTriangleSafetyFactor(ONE_THIRD);
    options.setTriangleSlopeFactor(ONE_THIRD);
    options.setTriangleTimeFactor(ONE_THIRD);
    startState = new State(v1, options);
    result = testStreet.traverse(startState);
    double averageWeight = result.getWeight();
    assertTrue(
        Math.abs(
                safetyWeight * ONE_THIRD
                    + slopeWeight * ONE_THIRD
                    + timeWeight * ONE_THIRD
                    - averageWeight)
            < 0.00000001);
  }
 // NEW
 public void setSlope(float slope, int slopeId) {
   _costs = ElevationUtils.getSlopeCosts(getDistance(), slope, false);
   this.elevationRating = slopeId;
 }