public boolean setElevationProfile( PackedCoordinateSequence elev, boolean computed, boolean slopeLimit) { if (elev == null || elev.size() < 2) { return false; } if (slopeOverride && !computed) { return false; } elevationProfile = elev; // compute the various costs of the elevation changes double lengthMultiplier = ElevationUtils.getLengthMultiplierFromElevation(elev); if (Double.isNaN(lengthMultiplier)) { LOG.error("lengthMultiplier from elevation profile is NaN, setting to 1"); lengthMultiplier = 1; } length *= lengthMultiplier; bicycleSafetyEffectiveLength *= lengthMultiplier; SlopeCosts costs = ElevationUtils.getSlopeCosts(elev, slopeLimit); slopeSpeedEffectiveLength = costs.slopeSpeedEffectiveLength; maxSlope = costs.maxSlope; slopeWorkCost = costs.slopeWorkCost; bicycleSafetyEffectiveLength += costs.slopeSafetyCost; flattened = costs.flattened; return costs.flattened; }
public PackedCoordinateSequence getElevationProfile(double start, double end) { return ElevationUtils.getPartialElevationProfile(elevationProfile, start, end); }
/** * return a StateEditor rather than a State so that we can make parking/mode switch modifications * for kiss-and-ride. */ private StateEditor doTraverse(State s0, RoutingRequest options, TraverseMode traverseMode) { boolean walkingBike = options.walkingBike; boolean backWalkingBike = s0.isBackWalkingBike(); TraverseMode backMode = s0.getBackMode(); Edge backEdge = s0.getBackEdge(); if (backEdge != null) { // No illegal U-turns. // NOTE(flamholz): we check both directions because both edges get a chance to decide // if they are the reverse of the other. Also, because it doesn't matter which direction // we are searching in - these traversals are always disallowed (they are U-turns in one // direction // or the other). // TODO profiling indicates that this is a hot spot. if (this.isReverseOf(backEdge) || backEdge.isReverseOf(this)) { return null; } } // Ensure we are actually walking, when walking a bike backWalkingBike &= TraverseMode.WALK.equals(backMode); walkingBike &= TraverseMode.WALK.equals(traverseMode); /* Check whether this street allows the current mode. If not and we are biking, attempt to walk the bike. */ if (!canTraverse(options, traverseMode)) { if (traverseMode == TraverseMode.BICYCLE) { return doTraverse(s0, options.bikeWalkingOptions, TraverseMode.WALK); } return null; } // Automobiles have variable speeds depending on the edge type double speed = calculateSpeed(options, traverseMode, s0.getTimeInMillis()); double time = getDistance() / speed; double weight; // TODO(flamholz): factor out this bike, wheelchair and walking specific logic to somewhere // central. if (options.wheelchairAccessible) { weight = getSlopeSpeedEffectiveLength() / speed; } else if (traverseMode.equals(TraverseMode.BICYCLE)) { time = getSlopeSpeedEffectiveLength() / speed; switch (options.optimize) { case SAFE: weight = bicycleSafetyFactor * getDistance() / speed; break; case GREENWAYS: weight = bicycleSafetyFactor * getDistance() / speed; if (bicycleSafetyFactor <= GREENWAY_SAFETY_FACTOR) { // greenways are treated as even safer than they really are weight *= 0.66; } break; case FLAT: /* see notes in StreetVertex on speed overhead */ weight = getDistance() / speed + getSlopeWorkCostEffectiveLength(); break; case QUICK: weight = getSlopeSpeedEffectiveLength() / speed; break; case TRIANGLE: double quick = getSlopeSpeedEffectiveLength(); double safety = bicycleSafetyFactor * getDistance(); // TODO This computation is not coherent with the one for FLAT double slope = getSlopeWorkCostEffectiveLength(); weight = quick * options.triangleTimeFactor + slope * options.triangleSlopeFactor + safety * options.triangleSafetyFactor; weight /= speed; break; default: weight = getDistance() / speed; } } else { if (walkingBike) { // take slopes into account when walking bikes time = getSlopeSpeedEffectiveLength() / speed; } weight = time; if (traverseMode.equals(TraverseMode.WALK)) { // take slopes into account when walking // FIXME: this causes steep stairs to be avoided. see #1297. double costs = ElevationUtils.getWalkCostsForSlope(getDistance(), getMaxSlope()); // as the cost walkspeed is assumed to be for 4.8km/h (= 1.333 m/sec) we need to adjust // for the walkspeed set by the user double elevationUtilsSpeed = 4.0 / 3.0; weight = costs * (elevationUtilsSpeed / speed); time = weight; // treat cost as time, as in the current model it actually is the same (this can // be checked for maxSlope == 0) /* // debug code if(weight > 100){ double timeflat = length / speed; System.out.format("line length: %.1f m, slope: %.3f ---> slope costs: %.1f , weight: %.1f , time (flat): %.1f %n", length, elevationProfile.getMaxSlope(), costs, weight, timeflat); } */ } } if (isStairs()) { weight *= options.stairsReluctance; } else { // TODO: this is being applied even when biking or driving. weight *= options.walkReluctance; } StateEditor s1 = s0.edit(this); s1.setBackMode(traverseMode); s1.setBackWalkingBike(walkingBike); /* Handle no through traffic areas. */ if (this.isNoThruTraffic()) { // Record transition into no-through-traffic area. if (backEdge instanceof StreetEdge && !((StreetEdge) backEdge).isNoThruTraffic()) { s1.setEnteredNoThroughTrafficArea(); } // If we transitioned into a no-through-traffic area at some point, check if we are exiting // it. if (s1.hasEnteredNoThroughTrafficArea()) { // Only Edges are marked as no-thru, but really we need to avoid creating dominant, pruned // states // on thru _Vertices_. This could certainly be improved somehow. for (StreetEdge se : Iterables.filter(s1.getVertex().getOutgoing(), StreetEdge.class)) { if (!se.isNoThruTraffic()) { // This vertex has at least one through-traffic edge. We can't dominate it with a // no-thru state. return null; } } } } /* Compute turn cost. */ StreetEdge backPSE; if (backEdge != null && backEdge instanceof StreetEdge) { backPSE = (StreetEdge) backEdge; RoutingRequest backOptions = backWalkingBike ? s0.getOptions().bikeWalkingOptions : s0.getOptions(); double backSpeed = backPSE.calculateSpeed(backOptions, backMode, s0.getTimeInMillis()); final double realTurnCost; // Units are seconds. // Apply turn restrictions if (options.arriveBy && !canTurnOnto(backPSE, s0, backMode)) { return null; } else if (!options.arriveBy && !backPSE.canTurnOnto(this, s0, traverseMode)) { return null; } /* * This is a subtle piece of code. Turn costs are evaluated differently during * forward and reverse traversal. During forward traversal of an edge, the turn * *into* that edge is used, while during reverse traversal, the turn *out of* * the edge is used. * * However, over a set of edges, the turn costs must add up the same (for * general correctness and specifically for reverse optimization). This means * that during reverse traversal, we must also use the speed for the mode of * the backEdge, rather than of the current edge. */ if (options.arriveBy && tov instanceof IntersectionVertex) { // arrive-by search IntersectionVertex traversedVertex = ((IntersectionVertex) tov); realTurnCost = backOptions .getIntersectionTraversalCostModel() .computeTraversalCost( traversedVertex, this, backPSE, backMode, backOptions, (float) speed, (float) backSpeed); } else if (!options.arriveBy && fromv instanceof IntersectionVertex) { // depart-after search IntersectionVertex traversedVertex = ((IntersectionVertex) fromv); realTurnCost = options .getIntersectionTraversalCostModel() .computeTraversalCost( traversedVertex, backPSE, this, traverseMode, options, (float) backSpeed, (float) speed); } else { // In case this is a temporary edge not connected to an IntersectionVertex LOG.debug("Not computing turn cost for edge {}", this); realTurnCost = 0; } if (!traverseMode.isDriving()) { s1.incrementWalkDistance(realTurnCost / 100); // just a tie-breaker } long turnTime = (long) Math.ceil(realTurnCost); time += turnTime; weight += options.turnReluctance * realTurnCost; } if (walkingBike || TraverseMode.BICYCLE.equals(traverseMode)) { if (!(backWalkingBike || TraverseMode.BICYCLE.equals(backMode))) { s1.incrementTimeInSeconds(options.bikeSwitchTime); s1.incrementWeight(options.bikeSwitchCost); } } if (!traverseMode.isDriving()) { s1.incrementWalkDistance(getDistance()); } /* On the pre-kiss/pre-park leg, limit both walking and driving, either soft or hard. */ int roundedTime = (int) Math.ceil(time); if (options.kissAndRide || options.parkAndRide) { if (options.arriveBy) { if (!s0.isCarParked()) s1.incrementPreTransitTime(roundedTime); } else { if (!s0.isEverBoarded()) s1.incrementPreTransitTime(roundedTime); } if (s1.isMaxPreTransitTimeExceeded(options)) { if (options.softPreTransitLimiting) { weight += calculateOverageWeight( s0.getPreTransitTime(), s1.getPreTransitTime(), options.maxPreTransitTime, options.preTransitPenalty, options.preTransitOverageRate); } else return null; } } /* Apply a strategy for avoiding walking too far, either soft (weight increases) or hard limiting (pruning). */ if (s1.weHaveWalkedTooFar(options)) { // if we're using a soft walk-limit if (options.softWalkLimiting) { // just slap a penalty for the overage onto s1 weight += calculateOverageWeight( s0.getWalkDistance(), s1.getWalkDistance(), options.getMaxWalkDistance(), options.softWalkPenalty, options.softWalkOverageRate); } else { // else, it's a hard limit; bail LOG.debug("Too much walking. Bailing."); return null; } } s1.incrementTimeInSeconds(roundedTime); s1.incrementWeight(weight); return s1; }
public void testTriangle() { Coordinate c1 = new Coordinate(-122.575033, 45.456773); Coordinate c2 = new Coordinate(-122.576668, 45.451426); Vertex v1 = new Vertex("v1", c1, null); Vertex v2 = new Vertex("v2", c2, null); GeometryFactory factory = new GeometryFactory(); LineString geometry = factory.createLineString(new Coordinate[] {c1, c2}); double length = 650.0; PlainStreetEdge testStreet = new PlainStreetEdge( v1, v2, geometry, "Test Lane", length, StreetTraversalPermission.ALL, false); testStreet.setBicycleSafetyEffectiveLength(length * 0.74); // a safe street Coordinate[] profile = new Coordinate[] { new Coordinate(0, 0), // slope = 0.1 new Coordinate(length / 2, length / 20.0), new Coordinate(length, 0) // slope = -0.1 }; PackedCoordinateSequence elev = new PackedCoordinateSequence.Double(profile); testStreet.setElevationProfile(elev); double trueLength = ElevationUtils.getLengthMultiplierFromElevation(elev) * length; testStreet.setSlopeSpeedEffectiveLength(trueLength); // normalize length SlopeCosts costs = ElevationUtils.getSlopeCosts(elev, "test"); TraverseOptions options = new TraverseOptions(TraverseMode.BICYCLE); options.optimizeFor = OptimizeType.TRIANGLE; options.speed = 6.0; options.walkReluctance = 1; options.setTriangleSafetyFactor(0); options.setTriangleSlopeFactor(0); options.setTriangleTimeFactor(1); State startState = new State(v1, options); State result = testStreet.traverse(startState); double timeWeight = result.getWeight(); double expectedSpeedWeight = trueLength / options.speed; assertEquals(expectedSpeedWeight, timeWeight); options.setTriangleSafetyFactor(0); options.setTriangleSlopeFactor(1); options.setTriangleTimeFactor(0); startState = new State(v1, options); result = testStreet.traverse(startState); double slopeWeight = result.getWeight(); assertTrue(length * 1.5 / options.speed < slopeWeight); assertTrue(length * 1.5 * 10 / options.speed > slopeWeight); options.setTriangleSafetyFactor(1); options.setTriangleSlopeFactor(0); options.setTriangleTimeFactor(0); startState = new State(v1, options); result = testStreet.traverse(startState); double safetyWeight = result.getWeight(); double slopeSafety = costs.slopeSafetyCost; double expectedSafetyWeight = (trueLength * 0.74 + slopeSafety) / options.speed; assertTrue(expectedSafetyWeight - safetyWeight < 0.00001); final double ONE_THIRD = 1 / 3.0; options.setTriangleSafetyFactor(ONE_THIRD); options.setTriangleSlopeFactor(ONE_THIRD); options.setTriangleTimeFactor(ONE_THIRD); startState = new State(v1, options); result = testStreet.traverse(startState); double averageWeight = result.getWeight(); assertTrue( Math.abs( safetyWeight * ONE_THIRD + slopeWeight * ONE_THIRD + timeWeight * ONE_THIRD - averageWeight) < 0.00000001); }
// NEW public void setSlope(float slope, int slopeId) { _costs = ElevationUtils.getSlopeCosts(getDistance(), slope, false); this.elevationRating = slopeId; }