public int abc(int sum) { return List.rangeClosed(1, sum) .crossProduct() .filter(t -> t._1 + t._2 < sum) .map(t -> Tuple.of(t._1, t._2, sum - t._1 - t._2)) .filter(t -> t._1 * t._1 + t._2 * t._2 == t._3 * t._3) .map(t -> t._1 * t._2 * t._3) .head(); }
public class Euler39Test { /** * <strong>Problem 39 Integer right triangles</strong> * * <p>If <i>p</i> is the perimeter of a right angle triangle with integral length sides, * {<i>a,b,c</i>}, there are exactly three solutions for <i>p</i> = 120. * * <p>{20,48,52}, {24,45,51}, {30,40,50} * * <p>For which value of <i>p</i> ≤ 1000, is the number of solutions maximised? * * <p>See also <a href="https://projecteuler.net/problem=39">projecteuler.net problem 39</a>. */ @Test public void shouldSolveProblem39() { assertThat(SOLUTIONS_FOR_PERIMETERS_UP_TO_1000.get(120)) .isEqualTo(some(List.of(Tuple.of(20, 48, 52), Tuple.of(24, 45, 51), Tuple.of(30, 40, 50)))); assertThat(perimeterUpTo1000WithMaximisedNumberOfSolutions()).isEqualTo(840); } private static int perimeterUpTo1000WithMaximisedNumberOfSolutions() { return SOLUTIONS_FOR_PERIMETERS_UP_TO_1000 .map((perimeter, listOfSolutions) -> Tuple.of(perimeter, listOfSolutions.length())) .maxBy(Tuple2::_2) .get() ._1; } private static final Map<Integer, List<Tuple3<Integer, Integer, Integer>>> SOLUTIONS_FOR_PERIMETERS_UP_TO_1000 = List.rangeClosed(1, 500) .flatMap(a -> List.rangeClosed(a, 500).map(b -> Tuple.of(a, b, hypot(a, b)))) .filter(t -> floor(t._3) == t._3) .map(t -> t.map3(Double::intValue)) .groupBy(t -> t.apply((a, b, c) -> a + b + c)) .filterKeys(d -> d <= 1_000); }
private static boolean isTruncatablePrime(int prime) { return Match(prime) .of( Case( $(p -> p > 7), p -> { final CharSeq primeSeq = CharSeq.of(Integer.toString(p)); return List.rangeClosed(1, primeSeq.length() - 1) .flatMap(i -> List.of(primeSeq.drop(i), primeSeq.dropRight(i))) .map(CharSeq::mkString) .map(Long::valueOf) .forAll(Utils.MEMOIZED_IS_PRIME::apply); }), Case($(), false)); }