@Test public void shouldConvertToList() { final Value<Integer> value = of(1, 2, 3); final List<Integer> list = value.toList(); if (value.isSingleValued()) { assertThat(list).isEqualTo(List.of(1)); } else { assertThat(list).isEqualTo(List.of(1, 2, 3)); } }
/** * <strong>Problem 37 Truncatable primes</strong> * * <p>The number 3797 has an interesting property. Being prime itself, it is possible to * continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, * and 7. Similarly we can work from right to left: 3797, 379, 37, and 3. * * <p>Find the sum of the only eleven primes that are both truncatable from left to right and * right to left. * * <p>NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes. * * <p>See also <a href="https://projecteuler.net/problem=37">projecteuler.net problem 37</a>. */ @Test public void shouldSolveProblem37() { assertThat(isTruncatablePrime(3797)).isTrue(); List.of(2, 3, 5, 7).forEach(i -> assertThat(isTruncatablePrime(7)).isFalse()); assertThat(sumOfTheElevenTruncatablePrimes()).isEqualTo(748_317); }
/** * <strong>Problem 39 Integer right triangles</strong> * * <p>If <i>p</i> is the perimeter of a right angle triangle with integral length sides, * {<i>a,b,c</i>}, there are exactly three solutions for <i>p</i> = 120. * * <p>{20,48,52}, {24,45,51}, {30,40,50} * * <p>For which value of <i>p</i> ≤ 1000, is the number of solutions maximised? * * <p>See also <a href="https://projecteuler.net/problem=39">projecteuler.net problem 39</a>. */ @Test public void shouldSolveProblem39() { assertThat(SOLUTIONS_FOR_PERIMETERS_UP_TO_1000.get(120)) .isEqualTo(some(List.of(Tuple.of(20, 48, 52), Tuple.of(24, 45, 51), Tuple.of(30, 40, 50)))); assertThat(perimeterUpTo1000WithMaximisedNumberOfSolutions()).isEqualTo(840); }
private static boolean isTruncatablePrime(int prime) { return Match(prime) .of( Case( $(p -> p > 7), p -> { final CharSeq primeSeq = CharSeq.of(Integer.toString(p)); return List.rangeClosed(1, primeSeq.length() - 1) .flatMap(i -> List.of(primeSeq.drop(i), primeSeq.dropRight(i))) .map(CharSeq::mkString) .map(Long::valueOf) .forAll(Utils.MEMOIZED_IS_PRIME::apply); }), Case($(), false)); }
@Test public void shouldConvertToSeq() { final Seq<?> actual = createIntTuple(1, 0, 0, 0, 0, 0, 0, 0).toSeq(); assertThat(actual).isEqualTo(List.of(1, 0, 0, 0, 0, 0, 0, 0)); }