示例#1
0
  /**
   * Rotate the oriented bounding box of the 3D image about the specified axis with the specified
   * angle.
   *
   * @param transform The transform and its matrix by which to rotate the image.
   */
  public void rotateFrameBy(Transform3D transform) {

    double rY, rX, rZ;
    double sinrX, sinrY, sinrZ, cosrX, cosrY, cosrZ;
    Matrix3d matrix = new Matrix3d();

    transform.get(matrix);

    rY = -Math.asin(matrix.m02);

    if (Math.cos(rY) != 0) {
      rX = -Math.atan2(matrix.m12, matrix.m22);
      rZ = Math.atan2(matrix.m01, matrix.m00);
    } else {
      rX = -Math.atan2(matrix.m10, matrix.m11);
      rZ = 0;
    }

    cosrX = Math.cos(rX);
    sinrX = Math.sin(rX);
    cosrY = Math.cos(rY);
    sinrY = Math.sin(rY);
    cosrZ = Math.cos(rZ);
    sinrZ = Math.sin(rZ);

    matrix.m00 = cosrZ * cosrY;
    matrix.m01 = -sinrZ * cosrY;
    matrix.m02 = sinrY;

    matrix.m10 = (cosrZ * sinrY * sinrX) + (sinrZ * cosrX);
    matrix.m11 = (-sinrZ * sinrY * sinrX) + (cosrZ * cosrX);
    matrix.m12 = -cosrY * sinrX;

    matrix.m20 = (-cosrZ * sinrY * cosrX) + (sinrZ * sinrX);
    matrix.m21 = (sinrZ * sinrY * cosrX) + (cosrZ * sinrX);
    matrix.m22 = cosrY * cosrX;

    m_kRotate.set(matrix);
    m_akAxis[0] = new Vector3f(1.0f, 0.0f, 0.0f);
    m_akAxis[1] = new Vector3f(0.0f, 1.0f, 0.0f);
    m_akAxis[2] = new Vector3f(0.0f, 0.0f, 1.0f);

    for (int i = 0; i < 3; i++) {
      m_kRotate.transform(m_akAxis[i]);
    }

    orthonormalize(m_akAxis);

    for (int i = 0; i < 3; i++) {
      setAxis(i, m_akAxis[i]);
    }
  }
  /**
   * Computes the new transform for this interpolator for a given alpha value.
   *
   * @param alphaValue alpha value between 0.0 and 1.0
   * @param transform object that receives the computed transform for the specified alpha value
   * @since Java 3D 1.3
   */
  public void computeTransform(float alphaValue, Transform3D transform) {
    // compute the current value of u from alpha and the
    // determine lower and upper knot points
    computePathInterpolation(alphaValue);

    // Determine the segment within which we will be interpolating
    currentSegmentIndex = this.lowerKnot - 1;

    // if we are at the start of the curve
    if (currentSegmentIndex == 0 && currentU == 0f) {
      iHeading = keyFrames[1].heading;
      iPitch = keyFrames[1].pitch;
      iBank = keyFrames[1].bank;
      iPos.set(keyFrames[1].position);
      iScale.set(keyFrames[1].scale);

      // if we are at the end of the curve
    } else if (currentSegmentIndex == (numSegments - 1) && currentU == 1.0) {
      iHeading = keyFrames[upperKnot].heading;
      iPitch = keyFrames[upperKnot].pitch;
      iBank = keyFrames[upperKnot].bank;
      iPos.set(keyFrames[upperKnot].position);
      iScale.set(keyFrames[upperKnot].scale);

      // if we are somewhere in between the curve
    } else {
      // Get a reference to the current spline segment i.e. the
      // one bounded by lowerKnot and upperKnot
      currentSegment = cubicSplineCurve.getSegment(currentSegmentIndex);

      // interpolate quaternions
      iHeading = currentSegment.getInterpolatedHeading(currentU);
      iPitch = currentSegment.getInterpolatedPitch(currentU);
      iBank = currentSegment.getInterpolatedBank(currentU);

      // interpolate position
      currentSegment.getInterpolatedPositionVector(currentU, iPos);

      // interpolate position
      currentSegment.getInterpolatedScale(currentU, iScale);
      // System.out.println("Pos :" + iPos);
    }

    // Modification by ReubenDB

    if (colorRampingInterpolate == true) {
      float[] curPos = new float[3];
      iPos.get(curPos);

      myColorRamp.getColor(curPos[1], histColor);
      // System.out.println("SETING COLOR:" + histColor + " CurPos: " + curPos[0] + ", " + curPos[1]
      // + ", " + curPos[2]);
      objectCA.setColor(histColor);
      // System.out.println("CurrentAlpha = " + myAlpha.value());
    }

    if (timeDisplayInterpolate == true) {
      myTimeDisplay.updateDisplayFromAlpha(myAlpha.value());
      // System.out.println(myAlpha.value());
    }

    // Generate a transformation matrix in tMat using interpolated
    // heading, pitch and bank
    pitchMat.setIdentity();
    pitchMat.rotX(-iPitch);
    bankMat.setIdentity();
    bankMat.rotZ(iBank);
    tMat.setIdentity();
    tMat.rotY(-iHeading);
    tMat.mul(pitchMat);
    tMat.mul(bankMat);

    // TODO: Vijay - Handle Non-Uniform scale
    // Currently this interpolator does not handle non uniform scale
    // We cheat by just taking the x scale component

    // Scale the transformation matrix
    sMat.set((double) iScale.x);
    tMat.mul(sMat);

    // Set the translation components.
    tMat.m03 = iPos.x;
    tMat.m13 = iPos.y;
    tMat.m23 = iPos.z;
    rotation.set(tMat);

    // construct a Transform3D from:  axis * rotation * axisInverse
    transform.mul(axis, rotation);
    transform.mul(transform, axisInverse);
  }