/** * Rotate the oriented bounding box of the 3D image about the specified axis with the specified * angle. * * @param transform The transform and its matrix by which to rotate the image. */ public void rotateFrameBy(Transform3D transform) { double rY, rX, rZ; double sinrX, sinrY, sinrZ, cosrX, cosrY, cosrZ; Matrix3d matrix = new Matrix3d(); transform.get(matrix); rY = -Math.asin(matrix.m02); if (Math.cos(rY) != 0) { rX = -Math.atan2(matrix.m12, matrix.m22); rZ = Math.atan2(matrix.m01, matrix.m00); } else { rX = -Math.atan2(matrix.m10, matrix.m11); rZ = 0; } cosrX = Math.cos(rX); sinrX = Math.sin(rX); cosrY = Math.cos(rY); sinrY = Math.sin(rY); cosrZ = Math.cos(rZ); sinrZ = Math.sin(rZ); matrix.m00 = cosrZ * cosrY; matrix.m01 = -sinrZ * cosrY; matrix.m02 = sinrY; matrix.m10 = (cosrZ * sinrY * sinrX) + (sinrZ * cosrX); matrix.m11 = (-sinrZ * sinrY * sinrX) + (cosrZ * cosrX); matrix.m12 = -cosrY * sinrX; matrix.m20 = (-cosrZ * sinrY * cosrX) + (sinrZ * sinrX); matrix.m21 = (sinrZ * sinrY * cosrX) + (cosrZ * sinrX); matrix.m22 = cosrY * cosrX; m_kRotate.set(matrix); m_akAxis[0] = new Vector3f(1.0f, 0.0f, 0.0f); m_akAxis[1] = new Vector3f(0.0f, 1.0f, 0.0f); m_akAxis[2] = new Vector3f(0.0f, 0.0f, 1.0f); for (int i = 0; i < 3; i++) { m_kRotate.transform(m_akAxis[i]); } orthonormalize(m_akAxis); for (int i = 0; i < 3; i++) { setAxis(i, m_akAxis[i]); } }
/** * Computes the new transform for this interpolator for a given alpha value. * * @param alphaValue alpha value between 0.0 and 1.0 * @param transform object that receives the computed transform for the specified alpha value * @since Java 3D 1.3 */ public void computeTransform(float alphaValue, Transform3D transform) { // compute the current value of u from alpha and the // determine lower and upper knot points computePathInterpolation(alphaValue); // Determine the segment within which we will be interpolating currentSegmentIndex = this.lowerKnot - 1; // if we are at the start of the curve if (currentSegmentIndex == 0 && currentU == 0f) { iHeading = keyFrames[1].heading; iPitch = keyFrames[1].pitch; iBank = keyFrames[1].bank; iPos.set(keyFrames[1].position); iScale.set(keyFrames[1].scale); // if we are at the end of the curve } else if (currentSegmentIndex == (numSegments - 1) && currentU == 1.0) { iHeading = keyFrames[upperKnot].heading; iPitch = keyFrames[upperKnot].pitch; iBank = keyFrames[upperKnot].bank; iPos.set(keyFrames[upperKnot].position); iScale.set(keyFrames[upperKnot].scale); // if we are somewhere in between the curve } else { // Get a reference to the current spline segment i.e. the // one bounded by lowerKnot and upperKnot currentSegment = cubicSplineCurve.getSegment(currentSegmentIndex); // interpolate quaternions iHeading = currentSegment.getInterpolatedHeading(currentU); iPitch = currentSegment.getInterpolatedPitch(currentU); iBank = currentSegment.getInterpolatedBank(currentU); // interpolate position currentSegment.getInterpolatedPositionVector(currentU, iPos); // interpolate position currentSegment.getInterpolatedScale(currentU, iScale); // System.out.println("Pos :" + iPos); } // Modification by ReubenDB if (colorRampingInterpolate == true) { float[] curPos = new float[3]; iPos.get(curPos); myColorRamp.getColor(curPos[1], histColor); // System.out.println("SETING COLOR:" + histColor + " CurPos: " + curPos[0] + ", " + curPos[1] // + ", " + curPos[2]); objectCA.setColor(histColor); // System.out.println("CurrentAlpha = " + myAlpha.value()); } if (timeDisplayInterpolate == true) { myTimeDisplay.updateDisplayFromAlpha(myAlpha.value()); // System.out.println(myAlpha.value()); } // Generate a transformation matrix in tMat using interpolated // heading, pitch and bank pitchMat.setIdentity(); pitchMat.rotX(-iPitch); bankMat.setIdentity(); bankMat.rotZ(iBank); tMat.setIdentity(); tMat.rotY(-iHeading); tMat.mul(pitchMat); tMat.mul(bankMat); // TODO: Vijay - Handle Non-Uniform scale // Currently this interpolator does not handle non uniform scale // We cheat by just taking the x scale component // Scale the transformation matrix sMat.set((double) iScale.x); tMat.mul(sMat); // Set the translation components. tMat.m03 = iPos.x; tMat.m13 = iPos.y; tMat.m23 = iPos.z; rotation.set(tMat); // construct a Transform3D from: axis * rotation * axisInverse transform.mul(axis, rotation); transform.mul(transform, axisInverse); }