/** Generate output image whose type is same as input image. */ private ImagePlus makeOutputImage(ImagePlus imp, FloatProcessor fp, int ptype) { int width = imp.getWidth(); int height = imp.getHeight(); float[] pixels = (float[]) fp.getPixels(); ImageProcessor oip = null; // Create output image consistent w/ type of input image. int size = pixels.length; switch (ptype) { case BYTE_TYPE: oip = imp.getProcessor().createProcessor(width, height); byte[] pixels8 = (byte[]) oip.getPixels(); for (int i = 0; i < size; i++) pixels8[i] = (byte) pixels[i]; break; case SHORT_TYPE: oip = imp.getProcessor().createProcessor(width, height); short[] pixels16 = (short[]) oip.getPixels(); for (int i = 0; i < size; i++) pixels16[i] = (short) pixels[i]; break; case FLOAT_TYPE: oip = new FloatProcessor(width, height, pixels, null); break; } // Adjust for display. // Calling this on non-ByteProcessors ensures image // processor is set up to correctly display image. oip.resetMinAndMax(); // Create new image plus object. Don't use // ImagePlus.createImagePlus here because there may be // attributes of input image that are not appropriate for // projection. return new ImagePlus(makeTitle(), oip); }
void Bernsen(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // Bernsen recommends WIN_SIZE = 31 and CONTRAST_THRESHOLD = 15. // 1) Bernsen J. (1986) "Dynamic Thresholding of Grey-Level Images" // Proc. of the 8th Int. Conf. on Pattern Recognition, pp. 1251-1255 // 2) Sezgin M. and Sankur B. (2004) "Survey over Image Thresholding // Techniques and Quantitative Performance Evaluation" Journal of // Electronic Imaging, 13(1): 146-165 // http://citeseer.ist.psu.edu/sezgin04survey.html // Ported to ImageJ plugin from E Celebi's fourier_0.8 routines // This version uses a circular local window, instead of a rectagular one ImagePlus Maximp, Minimp; ImageProcessor ip = imp.getProcessor(), ipMax, ipMin; int contrast_threshold = 15; int local_contrast; int mid_gray; byte object; byte backg; int temp; if (par1 != 0) { IJ.log("Bernsen: changed contrast_threshold from :" + contrast_threshold + " to:" + par1); contrast_threshold = (int) par1; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Maximp = duplicateImage(ip); ipMax = Maximp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMax, radius, rf.MAX); // Maximum // Maximp.show(); Minimp = duplicateImage(ip); ipMin = Minimp.getProcessor(); rf.rank(ipMin, radius, rf.MIN); // Minimum // Minimp.show(); byte[] pixels = (byte[]) ip.getPixels(); byte[] max = (byte[]) ipMax.getPixels(); byte[] min = (byte[]) ipMin.getPixels(); for (int i = 0; i < pixels.length; i++) { local_contrast = (int) ((max[i] & 0xff) - (min[i] & 0xff)); mid_gray = (int) ((min[i] & 0xff) + (max[i] & 0xff)) / 2; temp = (int) (pixels[i] & 0x0000ff); if (local_contrast < contrast_threshold) pixels[i] = (mid_gray >= 128) ? object : backg; // Low contrast region else pixels[i] = (temp >= mid_gray) ? object : backg; } // imp.updateAndDraw(); return; }
void createMaskFromThreshold(ImagePlus imp) { ImageProcessor ip = imp.getProcessor(); if (ip.getMinThreshold() == ImageProcessor.NO_THRESHOLD) { IJ.error("Create Mask", "Area selection or thresholded image required"); return; } double t1 = ip.getMinThreshold(); double t2 = ip.getMaxThreshold(); IJ.run("Duplicate...", "title=mask"); ImagePlus imp2 = WindowManager.getCurrentImage(); ImageProcessor ip2 = imp2.getProcessor(); ip2.setThreshold(t1, t2, ImageProcessor.NO_LUT_UPDATE); IJ.run("Convert to Mask"); }
void createEllipse(ImagePlus imp) { IJ.showStatus("Fitting ellipse"); Roi roi = imp.getRoi(); if (roi == null) { noRoi("Fit Ellipse"); return; } if (roi.isLine()) { IJ.error("Fit Ellipse", "\"Fit Ellipse\" does not work with line selections"); return; } ImageProcessor ip = imp.getProcessor(); ip.setRoi(roi); int options = Measurements.CENTROID + Measurements.ELLIPSE; ImageStatistics stats = ImageStatistics.getStatistics(ip, options, null); double dx = stats.major * Math.cos(stats.angle / 180.0 * Math.PI) / 2.0; double dy = -stats.major * Math.sin(stats.angle / 180.0 * Math.PI) / 2.0; double x1 = stats.xCentroid - dx; double x2 = stats.xCentroid + dx; double y1 = stats.yCentroid - dy; double y2 = stats.yCentroid + dy; double aspectRatio = stats.minor / stats.major; imp.killRoi(); imp.setRoi(new EllipseRoi(x1, y1, x2, y2, aspectRatio)); }
public int showDialog(ImagePlus imp, String command, PlugInFilterRunner pfr) { if (doOptions) { this.imp = imp; this.pfr = pfr; GenericDialog gd = new GenericDialog("Binary Options"); gd.addNumericField("Iterations (1-" + MAX_ITERATIONS + "):", iterations, 0, 3, ""); gd.addNumericField("Count (1-8):", count, 0, 3, ""); gd.addCheckbox("Black background", Prefs.blackBackground); gd.addCheckbox("Pad edges when eroding", Prefs.padEdges); gd.addChoice("EDM output:", outputTypes, outputTypes[EDM.getOutputType()]); if (imp != null) { gd.addChoice("Do:", operations, operation); gd.addPreviewCheckbox(pfr); gd.addDialogListener(this); previewing = true; } gd.addHelp(IJ.URL + "/docs/menus/process.html#options"); gd.showDialog(); previewing = false; if (gd.wasCanceled()) return DONE; if (imp == null) { // options dialog only, no do/preview dialogItemChanged(gd, null); // read dialog result return DONE; } return operation.equals(NO_OPERATION) ? DONE : IJ.setupDialog(imp, flags); } else { // no dialog, 'arg' is operation type if (!((ByteProcessor) imp.getProcessor()).isBinary()) { IJ.error("8-bit binary (black and white only) image required."); return DONE; } return IJ.setupDialog(imp, flags); } }
void createMask(ImagePlus imp) { Roi roi = imp.getRoi(); boolean useInvertingLut = Prefs.useInvertingLut; Prefs.useInvertingLut = false; if (roi == null || !(roi.isArea() || roi.getType() == Roi.POINT)) { createMaskFromThreshold(imp); Prefs.useInvertingLut = useInvertingLut; return; } ImagePlus maskImp = null; Frame frame = WindowManager.getFrame("Mask"); if (frame != null && (frame instanceof ImageWindow)) maskImp = ((ImageWindow) frame).getImagePlus(); if (maskImp == null) { ImageProcessor ip = new ByteProcessor(imp.getWidth(), imp.getHeight()); if (!Prefs.blackBackground) ip.invertLut(); maskImp = new ImagePlus("Mask", ip); maskImp.show(); } ImageProcessor ip = maskImp.getProcessor(); ip.setRoi(roi); ip.setValue(255); ip.fill(ip.getMask()); maskImp.updateAndDraw(); Prefs.useInvertingLut = useInvertingLut; }
public void run(ImageProcessor ip) { if (enlarge && gd.wasOKed()) synchronized (this) { if (!isEnlarged) { enlargeCanvas(); isEnlarged = true; } } if (isEnlarged) { // enlarging may have made the ImageProcessor invalid, also for the parallel // threads int slice = pfr.getSliceNumber(); if (imp.getStackSize() == 1) ip = imp.getProcessor(); else ip = imp.getStack().getProcessor(slice); } ip.setInterpolationMethod(interpolationMethod); if (fillWithBackground) { Color bgc = Toolbar.getBackgroundColor(); if (bitDepth == 8) ip.setBackgroundValue(ip.getBestIndex(bgc)); else if (bitDepth == 24) ip.setBackgroundValue(bgc.getRGB()); } else ip.setBackgroundValue(0); ip.rotate(angle); if (!gd.wasOKed()) drawGridLines(gridLines); if (isEnlarged && imp.getStackSize() == 1) { imp.changes = true; imp.updateAndDraw(); Undo.setup(Undo.COMPOUND_FILTER_DONE, imp); } }
/** * Prepare for processing; also called at the very end with argument 'final' to show any newly * created output image. */ public int setup(String arg, ImagePlus imp) { if (arg.equals("final")) { showOutput(); return DONE; } this.imp = imp; // 'arg' is processing type; default is 'EDM' (0) if (arg.equals("watershed")) { processType = WATERSHED; flags += KEEP_THRESHOLD; } else if (arg.equals("points")) processType = UEP; else if (arg.equals("voronoi")) processType = VORONOI; // output type if (processType != WATERSHED) // Watershed always has output BYTE_OVERWRITE=0 outImageType = outputType; // otherwise use the static variable from setOutputType if (outImageType != BYTE_OVERWRITE) flags |= NO_CHANGES; // check image and prepare if (imp != null) { ImageProcessor ip = imp.getProcessor(); if (!ip.isBinary()) { IJ.error("8-bit binary image (0 and 255) required."); return DONE; } ip.resetRoi(); // processing routines assume background=0; image may be otherwise boolean invertedLut = imp.isInvertedLut(); background255 = (invertedLut && Prefs.blackBackground) || (!invertedLut && !Prefs.blackBackground); } return flags; } // public int setup
private ImagePlus duplicateImage(ImageProcessor iProcessor) { int w = iProcessor.getWidth(); int h = iProcessor.getHeight(); ImagePlus iPlus = NewImage.createByteImage("Image", w, h, 1, NewImage.FILL_BLACK); ImageProcessor imageProcessor = iPlus.getProcessor(); imageProcessor.copyBits(iProcessor, 0, 0, Blitter.COPY); return iPlus; }
void Contrast(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // G. Landini, 2013 // Based on a simple contrast toggle. This procedure does not have user-provided paramters other // than the kernel radius // Sets the pixel value to either white or black depending on whether its current value is // closest to the local Max or Min respectively // The procedure is similar to Toggle Contrast Enhancement (see Soille, Morphological Image // Analysis (2004), p. 259 ImagePlus Maximp, Minimp; ImageProcessor ip = imp.getProcessor(), ipMax, ipMin; int c_value = 0; int mid_gray; byte object; byte backg; if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Maximp = duplicateImage(ip); ipMax = Maximp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMax, radius, rf.MAX); // Maximum // Maximp.show(); Minimp = duplicateImage(ip); ipMin = Minimp.getProcessor(); rf.rank(ipMin, radius, rf.MIN); // Minimum // Minimp.show(); byte[] pixels = (byte[]) ip.getPixels(); byte[] max = (byte[]) ipMax.getPixels(); byte[] min = (byte[]) ipMin.getPixels(); for (int i = 0; i < pixels.length; i++) { pixels[i] = ((Math.abs((int) (max[i] & 0xff - pixels[i] & 0xff)) <= Math.abs((int) (pixels[i] & 0xff - min[i] & 0xff)))) ? object : backg; } // imp.updateAndDraw(); return; }
void MidGrey(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // See: Image Processing Learning Resourches HIPR2 // http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm ImagePlus Maximp, Minimp; ImageProcessor ip = imp.getProcessor(), ipMax, ipMin; int c_value = 0; int mid_gray; byte object; byte backg; if (par1 != 0) { IJ.log("MidGrey: changed c_value from :" + c_value + " to:" + par1); c_value = (int) par1; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Maximp = duplicateImage(ip); ipMax = Maximp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMax, radius, rf.MAX); // Maximum // Maximp.show(); Minimp = duplicateImage(ip); ipMin = Minimp.getProcessor(); rf.rank(ipMin, radius, rf.MIN); // Minimum // Minimp.show(); byte[] pixels = (byte[]) ip.getPixels(); byte[] max = (byte[]) ipMax.getPixels(); byte[] min = (byte[]) ipMin.getPixels(); for (int i = 0; i < pixels.length; i++) { pixels[i] = ((int) (pixels[i] & 0xff) > (int) (((max[i] & 0xff) + (min[i] & 0xff)) / 2) - c_value) ? object : backg; } // imp.updateAndDraw(); return; }
/** * Execute the plugin functionality: duplicate and scale the given image. * * @return an Object[] array with the name and the scaled ImagePlus. Does NOT show the new, image; * just returns it. */ public Object[] exec( ImagePlus imp, String myMethod, int radius, double par1, double par2, boolean doIwhite) { // 0 - Check validity of parameters if (null == imp) return null; ImageProcessor ip = imp.getProcessor(); int xe = ip.getWidth(); int ye = ip.getHeight(); // int [] data = (ip.getHistogram()); IJ.showStatus("Thresholding..."); long startTime = System.currentTimeMillis(); // 1 Do it if (imp.getStackSize() == 1) { ip.snapshot(); Undo.setup(Undo.FILTER, imp); } // Apply the selected algorithm if (myMethod.equals("Bernsen")) { Bernsen(imp, radius, par1, par2, doIwhite); } else if (myMethod.equals("Contrast")) { Contrast(imp, radius, par1, par2, doIwhite); } else if (myMethod.equals("Mean")) { Mean(imp, radius, par1, par2, doIwhite); } else if (myMethod.equals("Median")) { Median(imp, radius, par1, par2, doIwhite); } else if (myMethod.equals("MidGrey")) { MidGrey(imp, radius, par1, par2, doIwhite); } else if (myMethod.equals("Niblack")) { Niblack(imp, radius, par1, par2, doIwhite); } else if (myMethod.equals("Otsu")) { Otsu(imp, radius, par1, par2, doIwhite); } else if (myMethod.equals("Phansalkar")) { Phansalkar(imp, radius, par1, par2, doIwhite); } else if (myMethod.equals("Sauvola")) { Sauvola(imp, radius, par1, par2, doIwhite); } // IJ.showProgress((double)(255-i)/255); imp.updateAndDraw(); imp.getProcessor().setThreshold(255, 255, ImageProcessor.NO_LUT_UPDATE); // 2 - Return the threshold and the image IJ.showStatus("\nDone " + (System.currentTimeMillis() - startTime) / 1000.0); return new Object[] {imp}; }
private void doRGBProjection(ImageStack stack) { ImageStack[] channels = ChannelSplitter.splitRGB(stack, true); ImagePlus red = new ImagePlus("Red", channels[0]); ImagePlus green = new ImagePlus("Green", channels[1]); ImagePlus blue = new ImagePlus("Blue", channels[2]); imp.unlock(); ImagePlus saveImp = imp; imp = red; color = "(red)"; doProjection(); ImagePlus red2 = projImage; imp = green; color = "(green)"; doProjection(); ImagePlus green2 = projImage; imp = blue; color = "(blue)"; doProjection(); ImagePlus blue2 = projImage; int w = red2.getWidth(), h = red2.getHeight(), d = red2.getStackSize(); if (method == SD_METHOD) { ImageProcessor r = red2.getProcessor(); ImageProcessor g = green2.getProcessor(); ImageProcessor b = blue2.getProcessor(); double max = 0; double rmax = r.getStatistics().max; if (rmax > max) max = rmax; double gmax = g.getStatistics().max; if (gmax > max) max = gmax; double bmax = b.getStatistics().max; if (bmax > max) max = bmax; double scale = 255 / max; r.multiply(scale); g.multiply(scale); b.multiply(scale); red2.setProcessor(r.convertToByte(false)); green2.setProcessor(g.convertToByte(false)); blue2.setProcessor(b.convertToByte(false)); } RGBStackMerge merge = new RGBStackMerge(); ImageStack stack2 = merge.mergeStacks(w, h, d, red2.getStack(), green2.getStack(), blue2.getStack(), true); imp = saveImp; projImage = new ImagePlus(makeTitle(), stack2); }
public int setup(String arg, ImagePlus imp) { this.arg = arg; IJ.register(Binary.class); doOptions = arg.equals("options"); if (doOptions) { if (imp == null) return NO_IMAGE_REQUIRED; // options dialog does not need a (suitable) image ImageProcessor ip = imp.getProcessor(); if (!(ip instanceof ByteProcessor)) return NO_IMAGE_REQUIRED; if (!((ByteProcessor) ip).isBinary()) return NO_IMAGE_REQUIRED; } return flags; }
void lineWidth() { int width = (int) IJ.getNumber("Line Width:", Line.getWidth()); if (width == IJ.CANCELED) return; Line.setWidth(width); LineWidthAdjuster.update(); ImagePlus imp = WindowManager.getCurrentImage(); if (imp != null && imp.isProcessor()) { ImageProcessor ip = imp.getProcessor(); ip.setLineWidth(Line.getWidth()); Roi roi = imp.getRoi(); if (roi != null && roi.isLine()) imp.draw(); } }
void Mean(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // See: Image Processing Learning Resourches HIPR2 // http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm ImagePlus Meanimp; ImageProcessor ip = imp.getProcessor(), ipMean; int c_value = 0; byte object; byte backg; if (par1 != 0) { IJ.log("Mean: changed c_value from :" + c_value + " to:" + par1); c_value = (int) par1; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Meanimp = duplicateImage(ip); ImageConverter ic = new ImageConverter(Meanimp); ic.convertToGray32(); ipMean = Meanimp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMean, radius, rf.MEAN); // Mean // Meanimp.show(); byte[] pixels = (byte[]) ip.getPixels(); float[] mean = (float[]) ipMean.getPixels(); for (int i = 0; i < pixels.length; i++) pixels[i] = ((int) (pixels[i] & 0xff) > (int) (mean[i] - c_value)) ? object : backg; // imp.updateAndDraw(); return; }
void setStackDisplayRange(ImagePlus imp) { ImageStack stack = imp.getStack(); double min = Double.MAX_VALUE; double max = -Double.MAX_VALUE; int n = stack.getSize(); for (int i = 1; i <= n; i++) { if (!silentMode) IJ.showStatus("Calculating stack min and max: " + i + "/" + n); ImageProcessor ip = stack.getProcessor(i); ip.resetMinAndMax(); if (ip.getMin() < min) min = ip.getMin(); if (ip.getMax() > max) max = ip.getMax(); } imp.getProcessor().setMinAndMax(min, max); imp.updateAndDraw(); }
// at the very end - show output image (if the is a separate one) private void showOutput() { if (interrupted) return; if (outStack != null) { outImp = new ImagePlus(TITLE_PREFIX[processType] + imp.getShortTitle(), outStack); int[] d = imp.getDimensions(); outImp.setDimensions(d[2], d[3], d[4]); for (int i = 1; i <= imp.getStackSize(); i++) outStack.setSliceLabel(imp.getStack().getSliceLabel(i), i); } if (outImageType != BYTE_OVERWRITE) { ImageProcessor ip = outImp.getProcessor(); if (!Prefs.blackBackground) ip.invertLut(); ip.resetMinAndMax(); outImp.show(); } }
/** Opens a stack of images. */ ImagePlus openStack(ColorModel cm, boolean show) { ImageStack stack = new ImageStack(fi.width, fi.height, cm); long skip = fi.getOffset(); Object pixels; try { ImageReader reader = new ImageReader(fi); InputStream is = createInputStream(fi); if (is == null) return null; IJ.resetEscape(); for (int i = 1; i <= fi.nImages; i++) { if (!silentMode) IJ.showStatus("Reading: " + i + "/" + fi.nImages); if (IJ.escapePressed()) { IJ.beep(); IJ.showProgress(1.0); silentMode = false; return null; } pixels = reader.readPixels(is, skip); if (pixels == null) break; stack.addSlice(null, pixels); skip = fi.gapBetweenImages; if (!silentMode) IJ.showProgress(i, fi.nImages); } is.close(); } catch (Exception e) { IJ.log("" + e); } catch (OutOfMemoryError e) { IJ.outOfMemory(fi.fileName); stack.trim(); } if (!silentMode) IJ.showProgress(1.0); if (stack.getSize() == 0) return null; if (fi.sliceLabels != null && fi.sliceLabels.length <= stack.getSize()) { for (int i = 0; i < fi.sliceLabels.length; i++) stack.setSliceLabel(fi.sliceLabels[i], i + 1); } ImagePlus imp = new ImagePlus(fi.fileName, stack); if (fi.info != null) imp.setProperty("Info", fi.info); if (show) imp.show(); imp.setFileInfo(fi); setCalibration(imp); ImageProcessor ip = imp.getProcessor(); if (ip.getMin() == ip.getMax()) // find stack min and max if first slice is blank setStackDisplayRange(imp); if (!silentMode) IJ.showProgress(1.0); silentMode = false; return imp; }
void setHistogram(ImagePlus imp, int j) { ImageProcessor ip = imp.getProcessor(); ImageStatistics stats = ImageStatistics.getStatistics(ip, AREA + MODE, null); int maxCount2 = 0; histogram = stats.histogram; for (int i = 0; i < stats.nBins; i++) if ((histogram[i] > maxCount2) && (i != stats.mode)) maxCount2 = histogram[i]; hmax = stats.maxCount; if ((hmax > (maxCount2 * 1.5)) && (maxCount2 != 0)) { // GL 1.5 was 2 hmax = (int) (maxCount2 * 1.1); // GL 1.1 was 1.5 histogram[stats.mode] = hmax; } os = null; ColorModel cm = ip.getColorModel(); if (!(cm instanceof IndexColorModel)) return; IndexColorModel icm = (IndexColorModel) cm; int mapSize = icm.getMapSize(); if (mapSize != 256) return; byte[] r = new byte[256]; byte[] g = new byte[256]; byte[] b = new byte[256]; icm.getReds(r); icm.getGreens(g); icm.getBlues(b); hColors = new Color[256]; if (isRGB) { if (j == 0) { for (int i = 0; i < 256; i++) hColors[i] = new Color(i & 255, 0 & 255, 0 & 255); } else if (j == 1) { for (int i = 0; i < 256; i++) hColors[i] = new Color(0 & 255, i & 255, 0 & 255); } else if (j == 2) { for (int i = 0; i < 256; i++) hColors[i] = new Color(0 & 255, 0 & 255, i & 255); } } else { if (j == 0) { for (int i = 0; i < 256; i++) hColors[i] = new Color(r[i] & 255, g[i] & 255, b[i] & 255); } else if (j == 1) { for (int i = 0; i < 256; i++) // hColors[i] = new Color(127-i/2&255, 127+i/2&255, 127-i/2&255); hColors[i] = new Color(192 - i / 4 & 255, 192 + i / 4 & 255, 192 - i / 4 & 255); } else if (j == 2) { for (int i = 0; i < 256; i++) hColors[i] = new Color(i & 255, i & 255, 0 & 255); } } }
public void run(String arg) { imp = IJ.getImage(); Roi roi = imp.getRoi(); if (roi != null && !roi.isArea()) imp.killRoi(); // ignore any line selection ImageProcessor ip = imp.getProcessor(); if (!showDialog(ip)) return; if (ip.getWidth() > 1 && ip.getHeight() > 1) ip.setInterpolate(interpolate); else ip.setInterpolate(false); ip.setBackgroundValue(bgValue); imp.startTiming(); try { if (newWindow && imp.getStackSize() > 1 && processStack) createNewStack(imp, ip); else scale(ip); } catch (OutOfMemoryError o) { IJ.outOfMemory("Scale"); } IJ.showProgress(1.0); }
public void doHyperStackProjection(boolean allTimeFrames) { int start = startSlice; int stop = stopSlice; int firstFrame = 1; int lastFrame = imp.getNFrames(); if (!allTimeFrames) firstFrame = lastFrame = imp.getFrame(); ImageStack stack = new ImageStack(imp.getWidth(), imp.getHeight()); int channels = imp.getNChannels(); int slices = imp.getNSlices(); if (slices == 1) { slices = imp.getNFrames(); firstFrame = lastFrame = 1; } int frames = lastFrame - firstFrame + 1; increment = channels; boolean rgb = imp.getBitDepth() == 24; for (int frame = firstFrame; frame <= lastFrame; frame++) { for (int channel = 1; channel <= channels; channel++) { startSlice = (frame - 1) * channels * slices + (start - 1) * channels + channel; stopSlice = (frame - 1) * channels * slices + (stop - 1) * channels + channel; if (rgb) doHSRGBProjection(imp); else doProjection(); stack.addSlice(null, projImage.getProcessor()); } } projImage = new ImagePlus(makeTitle(), stack); projImage.setDimensions(channels, 1, frames); if (channels > 1) { projImage = new CompositeImage(projImage, 0); ((CompositeImage) projImage).copyLuts(imp); if (method == SUM_METHOD || method == SD_METHOD) ((CompositeImage) projImage).resetDisplayRanges(); } if (frames > 1) projImage.setOpenAsHyperStack(true); Overlay overlay = imp.getOverlay(); if (overlay != null) { startSlice = start; stopSlice = stop; if (imp.getType() == ImagePlus.COLOR_RGB) projImage.setOverlay(projectRGBHyperStackRois(overlay)); else projImage.setOverlay(projectHyperStackRois(overlay)); } IJ.showProgress(1, 1); }
void createSelectionFromMask(ImagePlus imp) { ImageProcessor ip = imp.getProcessor(); if (ip.getMinThreshold() != ImageProcessor.NO_THRESHOLD) { IJ.runPlugIn("ij.plugin.filter.ThresholdToSelection", ""); return; } if (!ip.isBinary()) { IJ.error( "Create Selection", "This command creates a composite selection from\n" + "a mask (8-bit binary image with white background)\n" + "or from an image that has been thresholded using\n" + "the Image>Adjust>Threshold tool. The current\n" + "image is not a mask and has not been thresholded."); return; } int threshold = ip.isInvertedLut() ? 255 : 0; ip.setThreshold(threshold, threshold, ImageProcessor.NO_LUT_UPDATE); IJ.runPlugIn("ij.plugin.filter.ThresholdToSelection", ""); }
void createMask(ImagePlus imp) { Roi roi = imp.getRoi(); boolean useInvertingLut = Prefs.useInvertingLut; Prefs.useInvertingLut = false; boolean selectAll = roi != null && roi.getType() == Roi.RECTANGLE && roi.getBounds().width == imp.getWidth() && roi.getBounds().height == imp.getHeight() && imp.isThreshold(); if (roi == null || !(roi.isArea() || roi.getType() == Roi.POINT) || selectAll) { createMaskFromThreshold(imp); Prefs.useInvertingLut = useInvertingLut; return; } ImagePlus maskImp = null; Frame frame = WindowManager.getFrame("Mask"); if (frame != null && (frame instanceof ImageWindow)) maskImp = ((ImageWindow) frame).getImagePlus(); if (maskImp == null) { ImageProcessor ip = new ByteProcessor(imp.getWidth(), imp.getHeight()); if (!Prefs.blackBackground) ip.invertLut(); maskImp = new ImagePlus("Mask", ip); maskImp.show(); } ImageProcessor ip = maskImp.getProcessor(); ip.setRoi(roi); ip.setValue(255); ip.fill(ip.getMask()); Calibration cal = imp.getCalibration(); if (cal.scaled()) { Calibration cal2 = maskImp.getCalibration(); cal2.pixelWidth = cal.pixelWidth; cal2.pixelHeight = cal.pixelHeight; cal2.setUnit(cal.getUnit()); } maskImp.updateAndRepaintWindow(); Prefs.useInvertingLut = useInvertingLut; }
public void run(String arg) { ImagePlus imp = WindowManager.getCurrentImage(); if (imp == null) { IJ.noImage(); return; } if (imp.getStackSize() > 1) { IJ.error("This command requires a montage"); return; } GenericDialog gd = new GenericDialog("Stack Maker"); gd.addNumericField("Images_per_row: ", w, 0); gd.addNumericField("Images_per_column: ", h, 0); gd.addNumericField("Border width: ", b, 0); gd.showDialog(); if (gd.wasCanceled()) return; w = (int) gd.getNextNumber(); h = (int) gd.getNextNumber(); b = (int) gd.getNextNumber(); ImageStack stack = makeStack(imp.getProcessor(), w, h, b); new ImagePlus("Stack", stack).show(); }
/** Splits the specified image into separate channels. */ public static ImagePlus[] split(ImagePlus imp) { if (imp.getType() == ImagePlus.COLOR_RGB) { ImageStack[] stacks = splitRGB(imp.getStack(), true); ImagePlus[] images = new ImagePlus[3]; images[0] = new ImagePlus("red", stacks[0]); images[1] = new ImagePlus("green", stacks[1]); images[2] = new ImagePlus("blue", stacks[2]); return images; } int width = imp.getWidth(); int height = imp.getHeight(); int channels = imp.getNChannels(); int slices = imp.getNSlices(); int frames = imp.getNFrames(); int bitDepth = imp.getBitDepth(); int size = slices * frames; Vector images = new Vector(); HyperStackReducer reducer = new HyperStackReducer(imp); for (int c = 1; c <= channels; c++) { ImageStack stack2 = new ImageStack(width, height, size); // create empty stack stack2.setPixels( imp.getProcessor().getPixels(), 1); // can't create ImagePlus will null 1st image ImagePlus imp2 = new ImagePlus("C" + c + "-" + imp.getTitle(), stack2); stack2.setPixels(null, 1); imp.setPosition(c, 1, 1); imp2.setDimensions(1, slices, frames); imp2.setCalibration(imp.getCalibration()); reducer.reduce(imp2); if (imp.isComposite() && ((CompositeImage) imp).getMode() == IJ.GRAYSCALE) IJ.run(imp2, "Grays", ""); if (imp2.getNDimensions() > 3) imp2.setOpenAsHyperStack(true); images.add(imp2); } ImagePlus[] array = new ImagePlus[images.size()]; return (ImagePlus[]) images.toArray(array); }
/** Opens the image. Displays it if 'show' is true. Returns an ImagePlus object if successful. */ public ImagePlus open(boolean show) { ImagePlus imp = null; Object pixels; ProgressBar pb = null; ImageProcessor ip; ColorModel cm = createColorModel(fi); if (fi.nImages > 1) { return openStack(cm, show); } switch (fi.fileType) { case FileInfo.GRAY8: case FileInfo.COLOR8: case FileInfo.BITMAP: pixels = readPixels(fi); if (pixels == null) return null; ip = new ByteProcessor(width, height, (byte[]) pixels, cm); imp = new ImagePlus(fi.fileName, ip); break; case FileInfo.GRAY16_SIGNED: case FileInfo.GRAY16_UNSIGNED: case FileInfo.GRAY12_UNSIGNED: pixels = readPixels(fi); if (pixels == null) return null; ip = new ShortProcessor(width, height, (short[]) pixels, cm); imp = new ImagePlus(fi.fileName, ip); break; case FileInfo.GRAY32_INT: case FileInfo.GRAY32_UNSIGNED: case FileInfo.GRAY32_FLOAT: case FileInfo.GRAY24_UNSIGNED: case FileInfo.GRAY64_FLOAT: pixels = readPixels(fi); if (pixels == null) return null; ip = new FloatProcessor(width, height, (float[]) pixels, cm); imp = new ImagePlus(fi.fileName, ip); break; case FileInfo.RGB: case FileInfo.BGR: case FileInfo.ARGB: case FileInfo.ABGR: case FileInfo.BARG: case FileInfo.RGB_PLANAR: pixels = readPixels(fi); if (pixels == null) return null; ip = new ColorProcessor(width, height, (int[]) pixels); imp = new ImagePlus(fi.fileName, ip); break; case FileInfo.RGB48: case FileInfo.RGB48_PLANAR: boolean planar = fi.fileType == FileInfo.RGB48_PLANAR; Object[] pixelArray = (Object[]) readPixels(fi); if (pixelArray == null) return null; ImageStack stack = new ImageStack(width, height); stack.addSlice("Red", pixelArray[0]); stack.addSlice("Green", pixelArray[1]); stack.addSlice("Blue", pixelArray[2]); imp = new ImagePlus(fi.fileName, stack); imp.setDimensions(3, 1, 1); if (planar) imp.getProcessor().resetMinAndMax(); imp.setFileInfo(fi); int mode = CompositeImage.COMPOSITE; if (fi.description != null) { if (fi.description.indexOf("mode=color") != -1) mode = CompositeImage.COLOR; else if (fi.description.indexOf("mode=gray") != -1) mode = CompositeImage.GRAYSCALE; } imp = new CompositeImage(imp, mode); if (!planar && fi.displayRanges == null) { for (int c = 1; c <= 3; c++) { imp.setPosition(c, 1, 1); imp.setDisplayRange(minValue, maxValue); } imp.setPosition(1, 1, 1); } break; } imp.setFileInfo(fi); setCalibration(imp); if (fi.info != null) imp.setProperty("Info", fi.info); if (fi.sliceLabels != null && fi.sliceLabels.length == 1 && fi.sliceLabels[0] != null) imp.setProperty("Label", fi.sliceLabels[0]); if (show) imp.show(); return imp; }
void setCalibration(ImagePlus imp) { if (fi.fileType == FileInfo.GRAY16_SIGNED) { if (IJ.debugMode) IJ.log("16-bit signed"); double[] coeff = new double[2]; coeff[0] = -32768.0; coeff[1] = 1.0; imp.getLocalCalibration().setFunction(Calibration.STRAIGHT_LINE, coeff, "gray value"); } Properties props = decodeDescriptionString(fi); Calibration cal = imp.getCalibration(); boolean calibrated = false; if (fi.pixelWidth > 0.0 && fi.unit != null) { cal.pixelWidth = fi.pixelWidth; cal.pixelHeight = fi.pixelHeight; cal.pixelDepth = fi.pixelDepth; cal.setUnit(fi.unit); calibrated = true; } if (fi.valueUnit != null) { int f = fi.calibrationFunction; if ((f >= Calibration.STRAIGHT_LINE && f <= Calibration.RODBARD2 && fi.coefficients != null) || f == Calibration.UNCALIBRATED_OD) { boolean zeroClip = props != null && props.getProperty("zeroclip", "false").equals("true"); cal.setFunction(f, fi.coefficients, fi.valueUnit, zeroClip); calibrated = true; } } if (calibrated) checkForCalibrationConflict(imp, cal); if (fi.frameInterval != 0.0) cal.frameInterval = fi.frameInterval; if (props == null) return; cal.xOrigin = getDouble(props, "xorigin"); cal.yOrigin = getDouble(props, "yorigin"); cal.zOrigin = getDouble(props, "zorigin"); cal.info = props.getProperty("info"); cal.fps = getDouble(props, "fps"); cal.loop = getBoolean(props, "loop"); cal.frameInterval = getDouble(props, "finterval"); cal.setTimeUnit(props.getProperty("tunit", "sec")); double displayMin = getDouble(props, "min"); double displayMax = getDouble(props, "max"); if (!(displayMin == 0.0 && displayMax == 0.0)) { int type = imp.getType(); ImageProcessor ip = imp.getProcessor(); if (type == ImagePlus.GRAY8 || type == ImagePlus.COLOR_256) ip.setMinAndMax(displayMin, displayMax); else if (type == ImagePlus.GRAY16 || type == ImagePlus.GRAY32) { if (ip.getMin() != displayMin || ip.getMax() != displayMax) ip.setMinAndMax(displayMin, displayMax); } } int stackSize = imp.getStackSize(); if (stackSize > 1) { int channels = (int) getDouble(props, "channels"); int slices = (int) getDouble(props, "slices"); int frames = (int) getDouble(props, "frames"); if (channels == 0) channels = 1; if (slices == 0) slices = 1; if (frames == 0) frames = 1; // IJ.log("setCalibration: "+channels+" "+slices+" "+frames); if (channels * slices * frames == stackSize) { imp.setDimensions(channels, slices, frames); if (getBoolean(props, "hyperstack")) imp.setOpenAsHyperStack(true); } } }
/** Restores original disk or network version of image. */ public void revertToSaved(ImagePlus imp) { Image img; ProgressBar pb = IJ.getInstance().getProgressBar(); ImageProcessor ip; String path = fi.directory + fi.fileName; if (fi.fileFormat == fi.GIF_OR_JPG) { // restore gif or jpg img = Toolkit.getDefaultToolkit().createImage(path); imp.setImage(img); if (imp.getType() == ImagePlus.COLOR_RGB) Opener.convertGrayJpegTo8Bits(imp); return; } if (fi.fileFormat == fi.DICOM) { // restore DICOM ImagePlus imp2 = (ImagePlus) IJ.runPlugIn("ij.plugin.DICOM", path); if (imp2 != null) imp.setProcessor(null, imp2.getProcessor()); return; } if (fi.fileFormat == fi.BMP) { // restore BMP ImagePlus imp2 = (ImagePlus) IJ.runPlugIn("ij.plugin.BMP_Reader", path); if (imp2 != null) imp.setProcessor(null, imp2.getProcessor()); return; } if (fi.fileFormat == fi.PGM) { // restore PGM ImagePlus imp2 = (ImagePlus) IJ.runPlugIn("ij.plugin.PGM_Reader", path); if (imp2 != null) imp.setProcessor(null, imp2.getProcessor()); return; } if (fi.fileFormat == fi.ZIP_ARCHIVE) { // restore ".zip" file ImagePlus imp2 = (new Opener()).openZip(path); if (imp2 != null) imp.setProcessor(null, imp2.getProcessor()); return; } // restore PNG or another image opened using ImageIO if (fi.fileFormat == fi.IMAGEIO) { ImagePlus imp2 = (new Opener()).openUsingImageIO(path); if (imp2 != null) imp.setProcessor(null, imp2.getProcessor()); return; } if (fi.nImages > 1) return; ColorModel cm; if (fi.url == null || fi.url.equals("")) IJ.showStatus("Loading: " + path); else IJ.showStatus("Loading: " + fi.url + fi.fileName); Object pixels = readPixels(fi); if (pixels == null) return; cm = createColorModel(fi); switch (fi.fileType) { case FileInfo.GRAY8: case FileInfo.COLOR8: case FileInfo.BITMAP: ip = new ByteProcessor(width, height, (byte[]) pixels, cm); imp.setProcessor(null, ip); break; case FileInfo.GRAY16_SIGNED: case FileInfo.GRAY16_UNSIGNED: case FileInfo.GRAY12_UNSIGNED: ip = new ShortProcessor(width, height, (short[]) pixels, cm); imp.setProcessor(null, ip); break; case FileInfo.GRAY32_INT: case FileInfo.GRAY32_FLOAT: ip = new FloatProcessor(width, height, (float[]) pixels, cm); imp.setProcessor(null, ip); break; case FileInfo.RGB: case FileInfo.BGR: case FileInfo.ARGB: case FileInfo.ABGR: case FileInfo.RGB_PLANAR: img = Toolkit.getDefaultToolkit() .createImage(new MemoryImageSource(width, height, (int[]) pixels, 0, width)); imp.setImage(img); break; } }
/* if selection is closed shape, create a circle with the same area and centroid, otherwise use<br> the Pratt method to fit a circle to the points that define the line or multi-point selection.<br> Reference: Pratt V., Direct least-squares fitting of algebraic surfaces", Computer Graphics, Vol. 21, pages 145-152 (1987).<br> Original code: Nikolai Chernov's MATLAB script for Newton-based Pratt fit.<br> (http://www.math.uab.edu/~chernov/cl/MATLABcircle.html)<br> Java version: https://github.com/mdoube/BoneJ/blob/master/src/org/doube/geometry/FitCircle.java<br> @authors Nikolai Chernov, Michael Doube, Ved Sharma */ void fitCircle(ImagePlus imp) { Roi roi = imp.getRoi(); if (roi == null) { noRoi("Fit Circle"); return; } if (roi.isArea()) { // create circle with the same area and centroid ImageProcessor ip = imp.getProcessor(); ip.setRoi(roi); ImageStatistics stats = ImageStatistics.getStatistics(ip, Measurements.AREA + Measurements.CENTROID, null); double r = Math.sqrt(stats.pixelCount / Math.PI); imp.killRoi(); int d = (int) Math.round(2.0 * r); IJ.makeOval( (int) Math.round(stats.xCentroid - r), (int) Math.round(stats.yCentroid - r), d, d); return; } Polygon poly = roi.getPolygon(); int n = poly.npoints; int[] x = poly.xpoints; int[] y = poly.ypoints; if (n < 3) { IJ.error("Fit Circle", "At least 3 points are required to fit a circle."); return; } // calculate point centroid double sumx = 0, sumy = 0; for (int i = 0; i < n; i++) { sumx = sumx + poly.xpoints[i]; sumy = sumy + poly.ypoints[i]; } double meanx = sumx / n; double meany = sumy / n; // calculate moments double[] X = new double[n], Y = new double[n]; double Mxx = 0, Myy = 0, Mxy = 0, Mxz = 0, Myz = 0, Mzz = 0; for (int i = 0; i < n; i++) { X[i] = x[i] - meanx; Y[i] = y[i] - meany; double Zi = X[i] * X[i] + Y[i] * Y[i]; Mxy = Mxy + X[i] * Y[i]; Mxx = Mxx + X[i] * X[i]; Myy = Myy + Y[i] * Y[i]; Mxz = Mxz + X[i] * Zi; Myz = Myz + Y[i] * Zi; Mzz = Mzz + Zi * Zi; } Mxx = Mxx / n; Myy = Myy / n; Mxy = Mxy / n; Mxz = Mxz / n; Myz = Myz / n; Mzz = Mzz / n; // calculate the coefficients of the characteristic polynomial double Mz = Mxx + Myy; double Cov_xy = Mxx * Myy - Mxy * Mxy; double Mxz2 = Mxz * Mxz; double Myz2 = Myz * Myz; double A2 = 4 * Cov_xy - 3 * Mz * Mz - Mzz; double A1 = Mzz * Mz + 4 * Cov_xy * Mz - Mxz2 - Myz2 - Mz * Mz * Mz; double A0 = Mxz2 * Myy + Myz2 * Mxx - Mzz * Cov_xy - 2 * Mxz * Myz * Mxy + Mz * Mz * Cov_xy; double A22 = A2 + A2; double epsilon = 1e-12; double ynew = 1e+20; int IterMax = 20; double xnew = 0; int iterations = 0; // Newton's method starting at x=0 for (int iter = 1; iter <= IterMax; iter++) { iterations = iter; double yold = ynew; ynew = A0 + xnew * (A1 + xnew * (A2 + 4. * xnew * xnew)); if (Math.abs(ynew) > Math.abs(yold)) { if (IJ.debugMode) IJ.log("Fit Circle: wrong direction: |ynew| > |yold|"); xnew = 0; break; } double Dy = A1 + xnew * (A22 + 16 * xnew * xnew); double xold = xnew; xnew = xold - ynew / Dy; if (Math.abs((xnew - xold) / xnew) < epsilon) break; if (iter >= IterMax) { if (IJ.debugMode) IJ.log("Fit Circle: will not converge"); xnew = 0; } if (xnew < 0) { if (IJ.debugMode) IJ.log("Fit Circle: negative root: x = " + xnew); xnew = 0; } } if (IJ.debugMode) IJ.log("Fit Circle: n=" + n + ", xnew=" + IJ.d2s(xnew, 2) + ", iterations=" + iterations); // calculate the circle parameters double DET = xnew * xnew - xnew * Mz + Cov_xy; double CenterX = (Mxz * (Myy - xnew) - Myz * Mxy) / (2 * DET); double CenterY = (Myz * (Mxx - xnew) - Mxz * Mxy) / (2 * DET); double radius = Math.sqrt(CenterX * CenterX + CenterY * CenterY + Mz + 2 * xnew); if (Double.isNaN(radius)) { IJ.error("Fit Circle", "Points are collinear."); return; } CenterX = CenterX + meanx; CenterY = CenterY + meany; imp.killRoi(); IJ.makeOval( (int) Math.round(CenterX - radius), (int) Math.round(CenterY - radius), (int) Math.round(2 * radius), (int) Math.round(2 * radius)); }