/** A unit test for JUnit */ @Test public void testAlanin() throws Exception { HydrogenPlacer hydrogenPlacer = new HydrogenPlacer(); IAtomContainer mol1 = new AtomContainer(); SmilesGenerator sg = new SmilesGenerator(); mol1.addAtom(new Atom("N", new Point2d(1, 0))); // 1 mol1.addAtom(new Atom("C", new Point2d(1, 2))); // 2 mol1.addAtom(new Atom("F", new Point2d(1, 2))); // 3 mol1.addAtom(new Atom("C", new Point2d(0, 0))); // 4 mol1.addAtom(new Atom("C", new Point2d(1, 4))); // 5 mol1.addAtom(new Atom("O", new Point2d(1, 5))); // 6 mol1.addAtom(new Atom("O", new Point2d(1, 6))); // 7 mol1.addBond(0, 1, IBond.Order.SINGLE); // 1 mol1.addBond(1, 2, IBond.Order.SINGLE, IBond.Stereo.UP); // 2 mol1.addBond(1, 3, IBond.Order.SINGLE, IBond.Stereo.DOWN); // 3 mol1.addBond(1, 4, IBond.Order.SINGLE); // 4 mol1.addBond(4, 5, IBond.Order.SINGLE); // 5 mol1.addBond(4, 6, IBond.Order.DOUBLE); // 6 addExplicitHydrogens(mol1); hydrogenPlacer.placeHydrogens2D(mol1, 1.0); IsotopeFactory ifac = IsotopeFactory.getInstance(mol1.getBuilder()); ifac.configureAtoms(mol1); String smiles1 = null; if (standAlone) { display(mol1); } smiles1 = sg.createSMILES(mol1, true, new boolean[mol1.getBondCount()]); if (standAlone) { System.err.println("SMILES 1: " + smiles1); } Assert.assertNotNull(smiles1); Assert.assertEquals("[H]OC(=O)[C@](F)(N([H])[H])C([H])([H])[H]", smiles1); mol1.getBond(1).setStereo(IBond.Stereo.DOWN); mol1.getBond(2).setStereo(IBond.Stereo.UP); smiles1 = sg.createSMILES(mol1, true, new boolean[mol1.getBondCount()]); if (standAlone) { System.err.println("SMILES 1: " + smiles1); } Assert.assertNotNull(smiles1); Assert.assertEquals("[H]OC(=O)[C@](F)(C([H])([H])[H])N([H])[H]", smiles1); }
/** * Get the summed natural mass of all elements from an MolecularFormula. * * @param formula The IMolecularFormula to calculate * @return The summed exact mass of all atoms in this MolecularFormula */ public static double getNaturalExactMass(IMolecularFormula formula) { double mass = 0.0; IsotopeFactory factory; try { factory = Isotopes.getInstance(); } catch (IOException e) { throw new RuntimeException("Could not instantiate the IsotopeFactory."); } for (IIsotope isotope : formula.isotopes()) { IElement isotopesElement = formula.getBuilder().newInstance(IElement.class, isotope); mass += factory.getNaturalMass(isotopesElement) * formula.getIsotopeCount(isotope); } return mass; }
/** * Get the summed major isotopic mass of all elements from an MolecularFormula. * * @param formula The IMolecularFormula to calculate * @return The summed exact major isotope masses of all atoms in this MolecularFormula */ public static double getMajorIsotopeMass(IMolecularFormula formula) { double mass = 0.0; IsotopeFactory factory; try { factory = Isotopes.getInstance(); } catch (IOException e) { throw new RuntimeException("Could not instantiate the IsotopeFactory."); } for (IIsotope isotope : formula.isotopes()) { IIsotope major = factory.getMajorIsotope(isotope.getSymbol()); if (major != null) { mass += major.getExactMass() * formula.getIsotopeCount(isotope); } } return mass; }
private void fixHydrogenIsotopes(IAtomContainer molecule, IsotopeFactory isotopeFactory) { for (IAtom atom : AtomContainerManipulator.getAtomArray(molecule)) { if (atom instanceof IPseudoAtom) { IPseudoAtom pseudo = (IPseudoAtom) atom; if ("D".equals(pseudo.getLabel())) { IAtom newAtom = molecule.getBuilder().newInstance(IAtom.class, atom); newAtom.setSymbol("H"); newAtom.setAtomicNumber(1); isotopeFactory.configure(newAtom, isotopeFactory.getIsotope("H", 2)); AtomContainerManipulator.replaceAtomByAtom(molecule, atom, newAtom); } else if ("T".equals(pseudo.getLabel())) { IAtom newAtom = molecule.getBuilder().newInstance(IAtom.class, atom); newAtom.setSymbol("H"); newAtom.setAtomicNumber(1); isotopeFactory.configure(newAtom, isotopeFactory.getIsotope("H", 3)); AtomContainerManipulator.replaceAtomByAtom(molecule, atom, newAtom); } } } }
/** * Loads one or more files into IAtomContainer objects. * * <p>This method does not need knowledge of the format since it is autodetected. Note that if * aromaticity detection or atom typing is specified and fails for a specific molecule, that * molecule will be set to <i>null</i> * * @param filenames An array of String's containing the filenames of the structures we want to * load * @param doAromaticity If true, then aromaticity perception is performed * @param doTyping If true, atom typing and configuration is performed. This will use the internal * CDK atom typing scheme * @return An array of AtoContainer's * @throws CDKException if there is an error when reading a file */ public static IAtomContainer[] loadMolecules( String[] filenames, boolean doAromaticity, boolean doTyping, boolean doIsotopes) throws CDKException, IOException { Vector<IAtomContainer> v = new Vector<IAtomContainer>(); IChemObjectBuilder builder = DefaultChemObjectBuilder.getInstance(); try { int i; int j; for (i = 0; i < filenames.length; i++) { File input = new File(filenames[i]); ReaderFactory readerFactory = new ReaderFactory(); ISimpleChemObjectReader reader = readerFactory.createReader(new FileReader(input)); if (reader == null) { // see if it's a SMI file if (filenames[i].endsWith(".smi")) { reader = new SMILESReader(new FileReader(input)); } } IChemFile content = (IChemFile) reader.read(builder.newInstance(IChemFile.class)); if (content == null) continue; List<IAtomContainer> c = ChemFileManipulator.getAllAtomContainers(content); // we should do this loop in case we have files // that contain multiple molecules v.addAll(c); } } catch (Exception e) { e.printStackTrace(); throw new CDKException(e.toString()); } // convert the vector to a simple array IAtomContainer[] retValues = new IAtomContainer[v.size()]; for (int i = 0; i < v.size(); i++) { retValues[i] = v.get(i); } // before returning, lets make see if we // need to perceive aromaticity and atom typing if (doAromaticity) { for (int i = 0; i < retValues.length; i++) { try { CDKHueckelAromaticityDetector.detectAromaticity(retValues[i]); } catch (CDKException e) { retValues[i] = null; } } } if (doTyping) { for (int i = 0; i < retValues.length; i++) { try { AtomContainerManipulator.percieveAtomTypesAndConfigureAtoms(retValues[i]); } catch (CDKException e) { retValues[i] = null; } } } if (doIsotopes) { IsotopeFactory ifac = IsotopeFactory.getInstance(DefaultChemObjectBuilder.getInstance()); for (IAtomContainer retValue : retValues) { ifac.configureAtoms(retValue); } } return retValues; }
/** * Calculates the 3 MI's, 3 ration and the R_gyr value. * * <p>The molecule should have hydrogens * * @param container Parameter is the atom container. * @return An ArrayList containing 7 elements in the order described above */ @TestMethod("testCalculate_IAtomContainer") public DescriptorValue calculate(IAtomContainer container) { if (!GeometryTools.has3DCoordinates(container)) return getDummyDescriptorValue(new CDKException("Molecule must have 3D coordinates")); IAtomContainer clone; IsotopeFactory factory; try { clone = (IAtomContainer) container.clone(); factory = IsotopeFactory.getInstance(container.getBuilder()); factory.configureAtoms(clone); } catch (Exception e) { logger.debug(e); return getDummyDescriptorValue(e); } DoubleArrayResult retval = new DoubleArrayResult(7); double ccf = 1.000138; double eps = 1e-5; double[][] imat = new double[3][3]; Point3d centerOfMass = GeometryTools.get3DCentreOfMass(clone); double xdif; double ydif; double zdif; double xsq; double ysq; double zsq; for (int i = 0; i < clone.getAtomCount(); i++) { IAtom currentAtom = clone.getAtom(i); double mass = factory.getMajorIsotope(currentAtom.getSymbol()).getExactMass(); xdif = currentAtom.getPoint3d().x - centerOfMass.x; ydif = currentAtom.getPoint3d().y - centerOfMass.y; zdif = currentAtom.getPoint3d().z - centerOfMass.z; xsq = xdif * xdif; ysq = ydif * ydif; zsq = zdif * zdif; imat[0][0] += mass * (ysq + zsq); imat[1][1] += mass * (xsq + zsq); imat[2][2] += mass * (xsq + ysq); imat[1][0] += -1 * mass * ydif * xdif; imat[0][1] = imat[1][0]; imat[2][0] += -1 * mass * xdif * zdif; imat[0][2] = imat[2][0]; imat[2][1] += -1 * mass * ydif * zdif; imat[1][2] = imat[2][1]; } // diagonalize the MI tensor Matrix tmp = new Matrix(imat); EigenvalueDecomposition eigenDecomp = tmp.eig(); double[] eval = eigenDecomp.getRealEigenvalues(); retval.add(eval[2]); retval.add(eval[1]); retval.add(eval[0]); double etmp = eval[0]; eval[0] = eval[2]; eval[2] = etmp; if (Math.abs(eval[1]) > 1e-3) retval.add(eval[0] / eval[1]); else retval.add(1000); if (Math.abs(eval[2]) > 1e-3) { retval.add(eval[0] / eval[2]); retval.add(eval[1] / eval[2]); } else { retval.add(1000); retval.add(1000); } // finally get the radius of gyration double pri; IMolecularFormula formula = MolecularFormulaManipulator.getMolecularFormula(clone); if (Math.abs(eval[2]) > eps) pri = Math.pow(eval[0] * eval[1] * eval[2], 1.0 / 3.0); else pri = Math.sqrt(eval[0] * ccf / MolecularFormulaManipulator.getTotalExactMass(formula)); retval.add( Math.sqrt( Math.PI * 2 * pri * ccf / MolecularFormulaManipulator.getTotalExactMass(formula))); return new DescriptorValue( getSpecification(), getParameterNames(), getParameters(), retval, getDescriptorNames()); }
/** A unit test for JUnit */ @Test public void testDoubleBondConfiguration() throws Exception { HydrogenPlacer hydrogenPlacer = new HydrogenPlacer(); IAtomContainer mol1 = new AtomContainer(); SmilesGenerator sg = new SmilesGenerator(); mol1.addAtom(new Atom("S", new Point2d(0, 0))); // 1 mol1.addAtom(new Atom("C", new Point2d(1, 1))); // 2 mol1.addAtom(new Atom("F", new Point2d(2, 0))); // 3 mol1.addAtom(new Atom("C", new Point2d(1, 2))); // 4 mol1.addAtom(new Atom("F", new Point2d(2, 3))); // 5 mol1.addAtom(new Atom("S", new Point2d(0, 3))); // 1 mol1.addBond(0, 1, IBond.Order.SINGLE); // 1 mol1.addBond(1, 2, IBond.Order.SINGLE); // 2 mol1.addBond(1, 3, IBond.Order.DOUBLE); // 3 mol1.addBond(3, 4, IBond.Order.SINGLE); // 4 mol1.addBond(3, 5, IBond.Order.SINGLE); // 4 try { IsotopeFactory ifac = IsotopeFactory.getInstance(mol1.getBuilder()); ifac.configureAtoms(mol1); } catch (IOException ex) { } String smiles1 = null; if (standAlone) { display(mol1); } boolean[] bool = new boolean[mol1.getBondCount()]; bool[2] = true; try { smiles1 = sg.createSMILES(mol1, true, bool); } catch (Exception exc) { System.out.println(exc); if (!standAlone) { Assert.fail(); } } if (standAlone) { System.err.println("SMILES 1: " + smiles1); } Assert.assertNotNull(smiles1); Assert.assertEquals("F/C(=C/(F)S)S", smiles1); mol1.getAtom(4).setPoint2d(new Point2d(0, 3)); mol1.getAtom(5).setPoint2d(new Point2d(2, 3)); try { smiles1 = sg.createSMILES(mol1, true, bool); } catch (Exception exc) { System.out.println(exc); if (!standAlone) { Assert.fail(); } } if (standAlone) { System.err.println("SMILES 1: " + smiles1); } Assert.assertNotNull(smiles1); Assert.assertEquals("F/C(=C\\(F)S)S", smiles1); try { addExplicitHydrogens(mol1); hydrogenPlacer.placeHydrogens2D(mol1, 1.0); } catch (IOException ex) { } catch (ClassNotFoundException ex) { } bool = new boolean[mol1.getBondCount()]; bool[2] = true; try { smiles1 = sg.createSMILES(mol1, true, bool); } catch (Exception exc) { System.out.println(exc); if (!standAlone) { Assert.fail(); } } Assert.assertEquals("[H]S/C(F)=C/(F)S[H]", smiles1); mol1.getAtom(5).setPoint2d(new Point2d(0, 3)); mol1.getAtom(4).setPoint2d(new Point2d(2, 3)); try { smiles1 = sg.createSMILES(mol1, true, bool); } catch (Exception exc) { System.out.println(exc); if (!standAlone) { Assert.fail(); } } Assert.assertEquals("[H]S/C(F)=C\\(F)S[H]", smiles1); }
/** A unit test for JUnit */ @Test public void testCisTransDecalin() throws Exception { HydrogenPlacer hydrogenPlacer = new HydrogenPlacer(); IAtomContainer mol1 = new AtomContainer(); SmilesGenerator sg = new SmilesGenerator(); mol1.addAtom(new Atom("H", new Point2d(1, 0))); // 1 mol1.addAtom(new Atom("C", new Point2d(1, 2))); // 2 mol1.addAtom(new Atom("C", new Point2d(1, 2))); // 3 mol1.addAtom(new Atom("C", new Point2d(0, 0))); // 4 mol1.addAtom(new Atom("C", new Point2d(1, 4))); // 5 mol1.addAtom(new Atom("C", new Point2d(1, 5))); // 6 mol1.addAtom(new Atom("C", new Point2d(1, 6))); // 7 mol1.addAtom(new Atom("H", new Point2d(1, 0))); // 1 mol1.addAtom(new Atom("C", new Point2d(1, 2))); // 2 mol1.addAtom(new Atom("C", new Point2d(1, 2))); // 3 mol1.addAtom(new Atom("C", new Point2d(1, 2))); // 2 mol1.addAtom(new Atom("C", new Point2d(1, 2))); // 3 mol1.addBond(0, 1, IBond.Order.SINGLE, IBond.Stereo.DOWN); // 1 mol1.addBond(1, 2, IBond.Order.SINGLE); // 2 mol1.addBond(2, 3, IBond.Order.SINGLE); // 3 mol1.addBond(3, 4, IBond.Order.SINGLE); // 4 mol1.addBond(4, 5, IBond.Order.SINGLE); // 5 mol1.addBond(5, 6, IBond.Order.SINGLE); // 6 mol1.addBond(6, 7, IBond.Order.SINGLE, IBond.Stereo.DOWN); // 3 mol1.addBond(6, 8, IBond.Order.SINGLE); // 4 mol1.addBond(8, 9, IBond.Order.SINGLE); // 5 mol1.addBond(9, 10, IBond.Order.SINGLE); // 6 mol1.addBond(10, 11, IBond.Order.SINGLE); // 6 mol1.addBond(11, 1, IBond.Order.SINGLE); // 6 mol1.addBond(1, 6, IBond.Order.SINGLE); // 6 try { addExplicitHydrogens(mol1); hydrogenPlacer.placeHydrogens2D(mol1, 1.0); IsotopeFactory ifac = IsotopeFactory.getInstance(mol1.getBuilder()); ifac.configureAtoms(mol1); } catch (IOException ex) { } catch (ClassNotFoundException ex) { } String smiles1 = null; if (standAlone) { display(mol1); } try { smiles1 = sg.createSMILES(mol1, true, new boolean[mol1.getBondCount()]); } catch (Exception exc) { System.out.println(exc); if (!standAlone) { Assert.fail(); } } if (standAlone) { System.err.println("SMILES 1: " + smiles1); } Assert.assertNotNull(smiles1); Assert.assertEquals( "[H]C1([H])(C([H])([H])C([H])([H])C\\2([H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C\\2([H])(C1([H])([H]))))", smiles1); mol1.getBond(6).setStereo(IBond.Stereo.UP); String smiles3 = null; try { smiles3 = sg.createSMILES(mol1, true, new boolean[mol1.getBondCount()]); } catch (Exception exc) { System.out.println(exc); if (!standAlone) { Assert.fail(); } } Assert.assertNotSame(smiles3, smiles1); }
/** A unit test for JUnit */ @Test public void testCisResorcinol() throws Exception { HydrogenPlacer hydrogenPlacer = new HydrogenPlacer(); IAtomContainer mol1 = new AtomContainer(); SmilesGenerator sg = new SmilesGenerator(); mol1.addAtom(new Atom("O", new Point2d(3, 1))); // 1 mol1.addAtom(new Atom("H", new Point2d(2, 0))); // 2 mol1.addAtom(new Atom("C", new Point2d(2, 1))); // 3 mol1.addAtom(new Atom("C", new Point2d(1, 1))); // 4 mol1.addAtom(new Atom("C", new Point2d(1, 4))); // 5 mol1.addAtom(new Atom("C", new Point2d(1, 5))); // 6 mol1.addAtom(new Atom("C", new Point2d(1, 2))); // 7 mol1.addAtom(new Atom("C", new Point2d(2, 2))); // 1 mol1.addAtom(new Atom("O", new Point2d(3, 2))); // 2 mol1.addAtom(new Atom("H", new Point2d(2, 3))); // 3 mol1.addBond(0, 2, IBond.Order.SINGLE, IBond.Stereo.DOWN); // 1 mol1.addBond(1, 2, IBond.Order.SINGLE, IBond.Stereo.UP); // 2 mol1.addBond(2, 3, IBond.Order.SINGLE); // 3 mol1.addBond(3, 4, IBond.Order.SINGLE); // 4 mol1.addBond(4, 5, IBond.Order.SINGLE); // 5 mol1.addBond(5, 6, IBond.Order.SINGLE); // 6 mol1.addBond(6, 7, IBond.Order.SINGLE); // 3 mol1.addBond(7, 8, IBond.Order.SINGLE, IBond.Stereo.UP); // 4 mol1.addBond(7, 9, IBond.Order.SINGLE, IBond.Stereo.DOWN); // 5 mol1.addBond(7, 2, IBond.Order.SINGLE); // 6 try { addExplicitHydrogens(mol1); hydrogenPlacer.placeHydrogens2D(mol1, 1.0); IsotopeFactory ifac = IsotopeFactory.getInstance(mol1.getBuilder()); ifac.configureAtoms(mol1); } catch (IOException ex) { } catch (ClassNotFoundException ex) { } String smiles1 = null; if (standAlone) { display(mol1); } try { smiles1 = sg.createSMILES(mol1, true, new boolean[mol1.getBondCount()]); } catch (Exception exc) { System.out.println(exc); if (!standAlone) { Assert.fail(); } } if (standAlone) { System.err.println("SMILES 1: " + smiles1); } Assert.assertNotNull(smiles1); Assert.assertEquals( "[H]O[C@]1(C([H])([H])C([H])([H])C([H])([H])C([H])([H])[C@]1(O[H])([H]))([H])", smiles1); mol1 = AtomContainerManipulator.removeHydrogens(mol1); try { smiles1 = sg.createSMILES(mol1); } catch (Exception exc) { System.out.println(exc); if (!standAlone) { Assert.fail(); } } if (standAlone) { System.err.println("SMILES 1: " + smiles1); } Assert.assertNotNull(smiles1); Assert.assertEquals("OC1CCCCC1(O)", smiles1); }
/** * Read an IAtomContainer from a file in MDL sd format * * @return The Molecule that was read from the MDL file. */ private IAtomContainer readAtomContainer(IAtomContainer molecule) throws CDKException { logger.debug("Reading new molecule"); IAtomContainer outputContainer = null; int linecount = 0; int atoms = 0; int bonds = 0; int atom1 = 0; int atom2 = 0; int order = 0; IBond.Stereo stereo = (IBond.Stereo) CDKConstants.UNSET; int RGroupCounter = 1; int Rnumber = 0; String[] rGroup = null; double x = 0.0; double y = 0.0; double z = 0.0; double totalX = 0.0; double totalY = 0.0; double totalZ = 0.0; String title = null; String remark = null; // int[][] conMat = new int[0][0]; // String help; IAtom atom; String line = ""; // A map to keep track of R# atoms so that RGP line can be parsed Map<Integer, IPseudoAtom> rAtoms = new HashMap<Integer, IPseudoAtom>(); try { IsotopeFactory isotopeFactory = Isotopes.getInstance(); logger.info("Reading header"); line = input.readLine(); linecount++; if (line == null) { return null; } logger.debug("Line " + linecount + ": " + line); if (line.startsWith("$$$$")) { logger.debug("File is empty, returning empty molecule"); return molecule; } if (line.length() > 0) { title = line; } line = input.readLine(); linecount++; logger.debug("Line " + linecount + ": " + line); line = input.readLine(); linecount++; logger.debug("Line " + linecount + ": " + line); if (line.length() > 0) { remark = line; } logger.info("Reading rest of file"); line = input.readLine(); linecount++; logger.debug("Line " + linecount + ": " + line); // if the line is empty we hav a problem - either a malformed // molecule entry or just extra new lines at the end of the file if (line.length() == 0) { // read till the next $$$$ or EOF while (true) { line = input.readLine(); linecount++; if (line == null) { return null; } if (line.startsWith("$$$$")) { return molecule; // an empty molecule } } } // check the CT block version if (line.contains("V3000") || line.contains("v3000")) { handleError("This file must be read with the MDLV3000Reader."); } else if (!line.contains("V2000") && !line.contains("v2000")) { handleError("This file must be read with the MDLReader."); } atoms = Integer.parseInt(line.substring(0, 3).trim()); List<IAtom> atomList = new ArrayList<IAtom>(); logger.debug("Atomcount: " + atoms); bonds = Integer.parseInt(line.substring(3, 6).trim()); logger.debug("Bondcount: " + bonds); List<IBond> bondList = new ArrayList<IBond>(); // used for applying the MDL valence model int[] explicitValence = new int[atoms]; // read ATOM block logger.info("Reading atom block"); atomsByLinePosition = new ArrayList<IAtom>(); atomsByLinePosition.add(null); // 0 is not a valid position int atomBlockLineNumber = 0; for (int f = 0; f < atoms; f++) { line = input.readLine(); linecount++; atomBlockLineNumber++; Matcher trailingSpaceMatcher = TRAILING_SPACE.matcher(line); if (trailingSpaceMatcher.find()) { handleError( "Trailing space found", linecount, trailingSpaceMatcher.start(), trailingSpaceMatcher.end()); line = trailingSpaceMatcher.replaceAll(""); } x = Double.parseDouble(line.substring(0, 10).trim()); y = Double.parseDouble(line.substring(10, 20).trim()); z = Double.parseDouble(line.substring(20, 30).trim()); // *all* values should be zero, not just the sum totalX += Math.abs(x); totalY += Math.abs(y); totalZ += Math.abs(z); logger.debug("Coordinates: " + x + "; " + y + "; " + z); String element = line.substring(31, Math.min(line.length(), 34)).trim(); if (line.length() < 34) { handleError( "Element atom type does not follow V2000 format type should of length three" + " and padded with space if required", linecount, 31, 34); } logger.debug("Atom type: ", element); if (isotopeFactory.isElement(element)) { atom = isotopeFactory.configure(molecule.getBuilder().newInstance(IAtom.class, element)); } else if ("A".equals(element)) { atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element); } else if ("Q".equals(element)) { atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element); } else if ("*".equals(element)) { atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element); } else if ("LP".equals(element)) { atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element); } else if ("L".equals(element)) { atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element); } else if (element.equals("R") || (element.length() > 0 && element.charAt(0) == 'R')) { logger.debug("Atom ", element, " is not an regular element. Creating a PseudoAtom."); // check if the element is R rGroup = element.split("^R"); atom = null; if (rGroup.length > 1) { try { Rnumber = Integer.valueOf(rGroup[(rGroup.length - 1)]); RGroupCounter = Rnumber; element = "R" + Rnumber; atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element); } catch (Exception ex) { // This happens for atoms labeled "R#". // The Rnumber may be set later on, using RGP line atom = molecule.getBuilder().newInstance(IPseudoAtom.class, "R"); rAtoms.put(atomBlockLineNumber, (IPseudoAtom) atom); } } else { atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element); } } else { handleError( "Invalid element type. Must be an existing " + "element, or one in: A, Q, L, LP, *.", linecount, 32, 35); atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element); atom.setSymbol(element); } // store as 3D for now, convert to 2D (if totalZ == 0.0) later atom.setPoint3d(new Point3d(x, y, z)); // parse further fields if (line.length() >= 36) { String massDiffString = line.substring(34, 36).trim(); logger.debug("Mass difference: ", massDiffString); if (!(atom instanceof IPseudoAtom)) { try { int massDiff = Integer.parseInt(massDiffString); if (massDiff != 0) { IIsotope major = Isotopes.getInstance().getMajorIsotope(element); atom.setMassNumber(major.getMassNumber() + massDiff); } } catch (Exception exception) { handleError("Could not parse mass difference field.", linecount, 35, 37, exception); } } else { logger.error("Cannot set mass difference for a non-element!"); } } else { handleError("Mass difference is missing", linecount, 34, 36); } // set the stereo partiy Integer parity = line.length() > 41 ? Character.digit(line.charAt(41), 10) : 0; atom.setStereoParity(parity); if (line.length() >= 51) { String valenceString = removeNonDigits(line.substring(48, 51)); logger.debug("Valence: ", valenceString); if (!(atom instanceof IPseudoAtom)) { try { int valence = Integer.parseInt(valenceString); if (valence != 0) { // 15 is defined as 0 in mol files if (valence == 15) atom.setValency(0); else atom.setValency(valence); } } catch (Exception exception) { handleError( "Could not parse valence information field", linecount, 49, 52, exception); } } else { logger.error("Cannot set valence information for a non-element!"); } } if (line.length() >= 39) { String chargeCodeString = line.substring(36, 39).trim(); logger.debug("Atom charge code: ", chargeCodeString); int chargeCode = Integer.parseInt(chargeCodeString); if (chargeCode == 0) { // uncharged species } else if (chargeCode == 1) { atom.setFormalCharge(+3); } else if (chargeCode == 2) { atom.setFormalCharge(+2); } else if (chargeCode == 3) { atom.setFormalCharge(+1); } else if (chargeCode == 4) { } else if (chargeCode == 5) { atom.setFormalCharge(-1); } else if (chargeCode == 6) { atom.setFormalCharge(-2); } else if (chargeCode == 7) { atom.setFormalCharge(-3); } } else { handleError("Atom charge is missing", linecount, 36, 39); } try { // read the mmm field as position 61-63 String reactionAtomIDString = line.substring(60, 63).trim(); logger.debug("Parsing mapping id: ", reactionAtomIDString); try { int reactionAtomID = Integer.parseInt(reactionAtomIDString); if (reactionAtomID != 0) { atom.setProperty(CDKConstants.ATOM_ATOM_MAPPING, reactionAtomID); } } catch (Exception exception) { logger.error("Mapping number ", reactionAtomIDString, " is not an integer."); logger.debug(exception); } } catch (Exception exception) { // older mol files don't have all these fields... logger.warn("A few fields are missing. Older MDL MOL file?"); } // shk3: This reads shifts from after the molecule. I don't think this is an official // format, but I saw it frequently 80=>78 for alk if (line.length() >= 78) { double shift = Double.parseDouble(line.substring(69, 80).trim()); atom.setProperty("first shift", shift); } if (line.length() >= 87) { double shift = Double.parseDouble(line.substring(79, 87).trim()); atom.setProperty("second shift", shift); } atomList.add(atom); atomsByLinePosition.add(atom); } // convert to 2D, if totalZ == 0 if (totalX == 0.0 && totalY == 0.0 && totalZ == 0.0) { logger.info("All coordinates are 0.0"); if (atomList.size() == 1) { atomList.get(0).setPoint2d(new Point2d(x, y)); } else { for (IAtom atomToUpdate : atomList) { atomToUpdate.setPoint3d(null); } } } else if (totalZ == 0.0 && !forceReadAs3DCoords.isSet()) { logger.info("Total 3D Z is 0.0, interpreting it as a 2D structure"); for (IAtom atomToUpdate : atomList) { Point3d p3d = atomToUpdate.getPoint3d(); if (p3d != null) { atomToUpdate.setPoint2d(new Point2d(p3d.x, p3d.y)); atomToUpdate.setPoint3d(null); } } } // read BOND block logger.info("Reading bond block"); int queryBondCount = 0; for (int f = 0; f < bonds; f++) { line = input.readLine(); linecount++; atom1 = Integer.parseInt(line.substring(0, 3).trim()); atom2 = Integer.parseInt(line.substring(3, 6).trim()); order = Integer.parseInt(line.substring(6, 9).trim()); if (line.length() >= 12) { int mdlStereo = line.length() > 12 ? Integer.parseInt(line.substring(9, 12).trim()) : Integer.parseInt(line.substring(9).trim()); if (mdlStereo == 1) { // MDL up bond stereo = IBond.Stereo.UP; } else if (mdlStereo == 6) { // MDL down bond stereo = IBond.Stereo.DOWN; } else if (mdlStereo == 0) { if (order == 2) { // double bond stereo defined by coordinates stereo = IBond.Stereo.E_Z_BY_COORDINATES; } else { // bond has no stereochemistry stereo = IBond.Stereo.NONE; } } else if (mdlStereo == 3 && order == 2) { // unknown E/Z stereochemistry stereo = IBond.Stereo.E_OR_Z; } else if (mdlStereo == 4) { // MDL bond undefined stereo = IBond.Stereo.UP_OR_DOWN; } } else { handleError("Missing expected stereo field at line: ", linecount, 10, 12); } if (logger.isDebugEnabled()) { logger.debug("Bond: " + atom1 + " - " + atom2 + "; order " + order); } // interpret CTfile's special bond orders IAtom a1 = atomList.get(atom1 - 1); IAtom a2 = atomList.get(atom2 - 1); IBond newBond = null; if (order >= 1 && order <= 3) { IBond.Order cdkOrder = IBond.Order.SINGLE; if (order == 2) cdkOrder = IBond.Order.DOUBLE; if (order == 3) cdkOrder = IBond.Order.TRIPLE; if (stereo != null) { newBond = molecule.getBuilder().newInstance(IBond.class, a1, a2, cdkOrder, stereo); } else { newBond = molecule.getBuilder().newInstance(IBond.class, a1, a2, cdkOrder); } } else if (order == 4) { // aromatic bond if (stereo != null) { newBond = molecule.getBuilder().newInstance(IBond.class, a1, a2, IBond.Order.UNSET, stereo); } else { newBond = molecule.getBuilder().newInstance(IBond.class, a1, a2, IBond.Order.UNSET); } // mark both atoms and the bond as aromatic and raise the SINGLE_OR_DOUBLE-flag newBond.setFlag(CDKConstants.SINGLE_OR_DOUBLE, true); newBond.setFlag(CDKConstants.ISAROMATIC, true); a1.setFlag(CDKConstants.ISAROMATIC, true); a2.setFlag(CDKConstants.ISAROMATIC, true); } else { queryBondCount++; newBond = new CTFileQueryBond(molecule.getBuilder()); IAtom[] bondAtoms = {a1, a2}; newBond.setAtoms(bondAtoms); newBond.setOrder(null); CTFileQueryBond.Type queryBondType = null; switch (order) { case 5: queryBondType = CTFileQueryBond.Type.SINGLE_OR_DOUBLE; break; case 6: queryBondType = CTFileQueryBond.Type.SINGLE_OR_AROMATIC; break; case 7: queryBondType = CTFileQueryBond.Type.DOUBLE_OR_AROMATIC; break; case 8: queryBondType = CTFileQueryBond.Type.ANY; break; } ((CTFileQueryBond) newBond).setType(queryBondType); newBond.setStereo(stereo); } bondList.add((newBond)); // add the bond order to the explicit valence for each atom if (newBond.getOrder() != null && newBond.getOrder() != IBond.Order.UNSET) { explicitValence[atom1 - 1] += newBond.getOrder().numeric(); explicitValence[atom2 - 1] += newBond.getOrder().numeric(); } else { explicitValence[atom1 - 1] = Integer.MIN_VALUE; explicitValence[atom2 - 1] = Integer.MIN_VALUE; } } if (queryBondCount == 0) outputContainer = molecule; else { outputContainer = new QueryAtomContainer(molecule.getBuilder()); } outputContainer.setProperty(CDKConstants.TITLE, title); outputContainer.setProperty(CDKConstants.REMARK, remark); for (IAtom at : atomList) { outputContainer.addAtom(at); } for (IBond bnd : bondList) { outputContainer.addBond(bnd); } // read PROPERTY block logger.info("Reading property block"); while (true) { line = input.readLine(); linecount++; if (line == null) { handleError("The expected property block is missing!", linecount, 0, 0); } if (line.startsWith("M END")) break; boolean lineRead = false; if (line.startsWith("M CHG")) { // FIXME: if this is encountered for the first time, all // atom charges should be set to zero first! int infoCount = Integer.parseInt(line.substring(6, 9).trim()); StringTokenizer st = new StringTokenizer(line.substring(9)); for (int i = 1; i <= infoCount; i++) { String token = st.nextToken(); int atomNumber = Integer.parseInt(token.trim()); token = st.nextToken(); int charge = Integer.parseInt(token.trim()); outputContainer.getAtom(atomNumber - 1).setFormalCharge(charge); } } else if (line.matches("A\\s{1,4}\\d+")) { // Reads the pseudo atom property from the mol file // The atom number of the to replaced atom int aliasAtomNumber = Integer.parseInt(line.replaceFirst("A\\s{1,4}", "")) - RGroupCounter; line = input.readLine(); linecount++; String[] aliasArray = line.split("\\\\"); // name of the alias atom like R1 or R2 etc. String alias = ""; for (int i = 0; i < aliasArray.length; i++) { alias += aliasArray[i]; } IAtom aliasAtom = outputContainer.getAtom(aliasAtomNumber); // skip if already a pseudoatom if (aliasAtom instanceof IPseudoAtom) { ((IPseudoAtom) aliasAtom).setLabel(alias); continue; } IAtom newPseudoAtom = molecule.getBuilder().newInstance(IPseudoAtom.class, alias); if (aliasAtom.getPoint2d() != null) { newPseudoAtom.setPoint2d(aliasAtom.getPoint2d()); } if (aliasAtom.getPoint3d() != null) { newPseudoAtom.setPoint3d(aliasAtom.getPoint3d()); } outputContainer.addAtom(newPseudoAtom); List<IBond> bondsOfAliasAtom = outputContainer.getConnectedBondsList(aliasAtom); for (int i = 0; i < bondsOfAliasAtom.size(); i++) { IBond bondOfAliasAtom = bondsOfAliasAtom.get(i); IAtom connectedToAliasAtom = bondOfAliasAtom.getConnectedAtom(aliasAtom); IBond newBond = bondOfAliasAtom.getBuilder().newInstance(IBond.class); newBond.setAtoms(new IAtom[] {connectedToAliasAtom, newPseudoAtom}); newBond.setOrder(bondOfAliasAtom.getOrder()); outputContainer.addBond(newBond); outputContainer.removeBond(aliasAtom, connectedToAliasAtom); } outputContainer.removeAtom(aliasAtom); RGroupCounter++; } else if (line.startsWith("M ISO")) { try { String countString = line.substring(6, 10).trim(); int infoCount = Integer.parseInt(countString); StringTokenizer st = new StringTokenizer(line.substring(10)); for (int i = 1; i <= infoCount; i++) { int atomNumber = Integer.parseInt(st.nextToken().trim()); int absMass = Integer.parseInt(st.nextToken().trim()); if (absMass != 0) { IAtom isotope = outputContainer.getAtom(atomNumber - 1); isotope.setMassNumber(absMass); } } } catch (NumberFormatException exception) { String error = "Error (" + exception.getMessage() + ") while parsing line " + linecount + ": " + line + " in property block."; logger.error(error); handleError( "NumberFormatException in isotope information.", linecount, 7, 11, exception); } } else if (line.startsWith("M RAD")) { try { String countString = line.substring(6, 9).trim(); int infoCount = Integer.parseInt(countString); StringTokenizer st = new StringTokenizer(line.substring(9)); for (int i = 1; i <= infoCount; i++) { int atomNumber = Integer.parseInt(st.nextToken().trim()); int spinMultiplicity = Integer.parseInt(st.nextToken().trim()); MDLV2000Writer.SPIN_MULTIPLICITY spin = MDLV2000Writer.SPIN_MULTIPLICITY.NONE; if (spinMultiplicity > 0) { IAtom radical = outputContainer.getAtom(atomNumber - 1); switch (spinMultiplicity) { case 1: spin = MDLV2000Writer.SPIN_MULTIPLICITY.DOUBLET; break; case 2: spin = MDLV2000Writer.SPIN_MULTIPLICITY.SINGLET; break; case 3: spin = MDLV2000Writer.SPIN_MULTIPLICITY.TRIPLET; break; default: logger.debug("Invalid spin multiplicity found: " + spinMultiplicity); break; } for (int j = 0; j < spin.getSingleElectrons(); j++) { outputContainer.addSingleElectron( molecule.getBuilder().newInstance(ISingleElectron.class, radical)); } } } } catch (NumberFormatException exception) { String error = "Error (" + exception.getMessage() + ") while parsing line " + linecount + ": " + line + " in property block."; logger.error(error); handleError( "NumberFormatException in radical information", linecount, 7, 10, exception); } } else if (line.startsWith("G ")) { try { String atomNumberString = line.substring(3, 6).trim(); int atomNumber = Integer.parseInt(atomNumberString); // String whatIsThisString = line.substring(6,9).trim(); String atomName = input.readLine(); // convert Atom into a PseudoAtom IAtom prevAtom = outputContainer.getAtom(atomNumber - 1); IPseudoAtom pseudoAtom = molecule.getBuilder().newInstance(IPseudoAtom.class, atomName); if (prevAtom.getPoint2d() != null) { pseudoAtom.setPoint2d(prevAtom.getPoint2d()); } if (prevAtom.getPoint3d() != null) { pseudoAtom.setPoint3d(prevAtom.getPoint3d()); } AtomContainerManipulator.replaceAtomByAtom(molecule, prevAtom, pseudoAtom); } catch (NumberFormatException exception) { String error = "Error (" + exception.toString() + ") while parsing line " + linecount + ": " + line + " in property block."; logger.error(error); handleError("NumberFormatException in group information", linecount, 4, 7, exception); } } else if (line.startsWith("M RGP")) { StringTokenizer st = new StringTokenizer(line); // Ignore first 3 tokens (overhead). st.nextToken(); st.nextToken(); st.nextToken(); // Process the R group numbers as defined in RGP line. while (st.hasMoreTokens()) { Integer position = new Integer(st.nextToken()); Rnumber = new Integer(st.nextToken()); IPseudoAtom pseudoAtom = rAtoms.get(position); if (pseudoAtom != null) { pseudoAtom.setLabel("R" + Rnumber); } } } if (line.startsWith("V ")) { Integer atomNumber = new Integer(line.substring(3, 6).trim()); IAtom atomWithComment = outputContainer.getAtom(atomNumber - 1); atomWithComment.setProperty(CDKConstants.COMMENT, line.substring(7)); } if (!lineRead) { logger.warn("Skipping line in property block: ", line); } } if (interpretHydrogenIsotopes.isSet()) { fixHydrogenIsotopes(molecule, isotopeFactory); } // note: apply the valence model last so that all fixes (i.e. hydrogen // isotopes) are in place for (int i = 0; i < atoms; i++) { applyMDLValenceModel(outputContainer.getAtom(i), explicitValence[i]); } } catch (CDKException exception) { String error = "Error while parsing line " + linecount + ": " + line + " -> " + exception.getMessage(); logger.error(error); logger.debug(exception); throw exception; } catch (Exception exception) { exception.printStackTrace(); String error = "Error while parsing line " + linecount + ": " + line + " -> " + exception.getMessage(); logger.error(error); logger.debug(exception); handleError("Error while parsing line: " + line, linecount, 0, 0, exception); } return outputContainer; }