@Test public void testTwoSampleTHomoscedastic() { double[] sample1 = {2, 4, 6, 8, 10, 97}; double[] sample2 = {4, 6, 8, 10, 16}; SummaryStatistics sampleStats1 = new SummaryStatistics(); for (int i = 0; i < sample1.length; i++) { sampleStats1.addValue(sample1[i]); } SummaryStatistics sampleStats2 = new SummaryStatistics(); for (int i = 0; i < sample2.length; i++) { sampleStats2.addValue(sample2[i]); } // Target comparison values computed using R version 1.8.1 (Linux version) Assert.assertEquals( "two sample homoscedastic t stat", 0.73096310086, TestUtils.homoscedasticT(sample1, sample2), 10E-11); Assert.assertEquals( "two sample homoscedastic p value", 0.4833963785, TestUtils.homoscedasticTTest(sampleStats1, sampleStats2), 1E-10); Assert.assertTrue( "two sample homoscedastic t-test reject", TestUtils.homoscedasticTTest(sample1, sample2, 0.49)); Assert.assertTrue( "two sample homoscedastic t-test accept", !TestUtils.homoscedasticTTest(sample1, sample2, 0.48)); }
@Test public void testOneSampleTTest() { double[] oneSidedP = { 2d, 0d, 6d, 6d, 3d, 3d, 2d, 3d, -6d, 6d, 6d, 6d, 3d, 0d, 1d, 1d, 0d, 2d, 3d, 3d }; SummaryStatistics oneSidedPStats = new SummaryStatistics(); for (int i = 0; i < oneSidedP.length; i++) { oneSidedPStats.addValue(oneSidedP[i]); } // Target comparison values computed using R version 1.8.1 (Linux version) Assert.assertEquals("one sample t stat", 3.86485535541, TestUtils.t(0d, oneSidedP), 10E-10); Assert.assertEquals("one sample t stat", 3.86485535541, TestUtils.t(0d, oneSidedPStats), 1E-10); Assert.assertEquals( "one sample p value", 0.000521637019637, TestUtils.tTest(0d, oneSidedP) / 2d, 10E-10); Assert.assertEquals( "one sample p value", 0.000521637019637, TestUtils.tTest(0d, oneSidedPStats) / 2d, 10E-5); Assert.assertTrue("one sample t-test reject", TestUtils.tTest(0d, oneSidedP, 0.01)); Assert.assertTrue("one sample t-test reject", TestUtils.tTest(0d, oneSidedPStats, 0.01)); Assert.assertTrue("one sample t-test accept", !TestUtils.tTest(0d, oneSidedP, 0.0001)); Assert.assertTrue("one sample t-test accept", !TestUtils.tTest(0d, oneSidedPStats, 0.0001)); try { TestUtils.tTest(0d, oneSidedP, 95); Assert.fail("alpha out of range, OutOfRangeException expected"); } catch (OutOfRangeException ex) { // expected } try { TestUtils.tTest(0d, oneSidedPStats, 95); Assert.fail("alpha out of range, OutOfRangeException expected"); } catch (OutOfRangeException ex) { // expected } }
@Test public void testSmallSamples() { double[] sample1 = {1d, 3d}; double[] sample2 = {4d, 5d}; // Target values computed using R, version 1.8.1 (linux version) Assert.assertEquals(-2.2360679775, TestUtils.t(sample1, sample2), 1E-10); Assert.assertEquals(0.198727388935, TestUtils.tTest(sample1, sample2), 1E-10); }
/** Contingency table containing zeros - PR # 32531 */ @Test public void testChiSquareZeroCount() { // Target values computed using R version 1.8.1 long[][] counts = {{40, 0, 4}, {91, 1, 2}, {60, 2, 0}}; Assert.assertEquals( "chi-square test statistic", 9.67444662263, TestUtils.chiSquare(counts), 1E-9); Assert.assertEquals( "chi-square p-value", 0.0462835770603, TestUtils.chiSquareTest(counts), 1E-9); }
@Test public void testKSOneSample() throws Exception { final NormalDistribution unitNormal = new NormalDistribution(0d, 1d); final double[] sample = KolmogorovSmirnovTestTest.gaussian; final double tol = KolmogorovSmirnovTestTest.TOLERANCE; Assert.assertEquals( 0.3172069207622391, TestUtils.kolmogorovSmirnovTest(unitNormal, sample), tol); Assert.assertEquals( 0.0932947561266756, TestUtils.kolmogorovSmirnovStatistic(unitNormal, sample), tol); }
@Test public void testGTestGoodnesOfFit() throws Exception { double[] exp = new double[] {0.54d, 0.40d, 0.05d, 0.01d}; long[] obs = new long[] {70, 79, 3, 4}; Assert.assertEquals("G test statistic", 13.144799, TestUtils.g(exp, obs), 1E-5); double p_gtgf = TestUtils.gTest(exp, obs); Assert.assertEquals("g-Test p-value", 0.004333, p_gtgf, 1E-5); Assert.assertTrue(TestUtils.gTest(exp, obs, 0.05)); }
@Test public void testOneWayAnovaUtils() { classes.add(classA); classes.add(classB); classes.add(classC); Assert.assertEquals( oneWayAnova.anovaFValue(classes), TestUtils.oneWayAnovaFValue(classes), 10E-12); Assert.assertEquals( oneWayAnova.anovaPValue(classes), TestUtils.oneWayAnovaPValue(classes), 10E-12); Assert.assertEquals( oneWayAnova.anovaTest(classes, 0.01), TestUtils.oneWayAnovaTest(classes, 0.01)); }
@Test public void testPaired() { double[] sample1 = {1d, 3d, 5d, 7d}; double[] sample2 = {0d, 6d, 11d, 2d}; double[] sample3 = {5d, 7d, 8d, 10d}; // Target values computed using R, version 1.8.1 (linux version) Assert.assertEquals(-0.3133, TestUtils.pairedT(sample1, sample2), 1E-4); Assert.assertEquals(0.774544295819, TestUtils.pairedTTest(sample1, sample2), 1E-10); Assert.assertEquals(0.001208, TestUtils.pairedTTest(sample1, sample3), 1E-6); Assert.assertFalse(TestUtils.pairedTTest(sample1, sample3, .001)); Assert.assertTrue(TestUtils.pairedTTest(sample1, sample3, .002)); }
@Test public void testKSTwoSample() throws Exception { final double tol = KolmogorovSmirnovTestTest.TOLERANCE; final double[] smallSample1 = {6, 7, 9, 13, 19, 21, 22, 23, 24}; final double[] smallSample2 = {10, 11, 12, 16, 20, 27, 28, 32, 44, 54}; Assert.assertEquals( 0.105577085453247, TestUtils.kolmogorovSmirnovTest(smallSample1, smallSample2, false), tol); final double d = TestUtils.kolmogorovSmirnovStatistic(smallSample1, smallSample2); Assert.assertEquals(0.5, d, tol); Assert.assertEquals( 0.105577085453247, TestUtils.exactP(d, smallSample1.length, smallSample2.length, false), tol); }
@Test public void testGTestIndependance() throws Exception { long[] obs1 = new long[] {268, 199, 42}; long[] obs2 = new long[] {807, 759, 184}; double g = TestUtils.gDataSetsComparison(obs1, obs2); Assert.assertEquals("G test statistic", 7.3008170, g, 1E-4); double p_gti = TestUtils.gTestDataSetsComparison(obs1, obs2); Assert.assertEquals("g-Test p-value", 0.0259805, p_gti, 1E-4); Assert.assertTrue(TestUtils.gTestDataSetsComparison(obs1, obs2, 0.05)); }
@Test public void testChiSquareLargeTestStatistic() { double[] exp = new double[] { 3389119.5, 649136.6, 285745.4, 25357364.76, 11291189.78, 543628.0, 232921.0, 437665.75 }; long[] obs = new long[] {2372383, 584222, 257170, 17750155, 7903832, 489265, 209628, 393899}; org.apache.commons.math4.stat.inference.ChiSquareTest csti = new org.apache.commons.math4.stat.inference.ChiSquareTest(); double cst = csti.chiSquareTest(exp, obs); Assert.assertEquals("chi-square p-value", 0.0, cst, 1E-3); Assert.assertEquals( "chi-square test statistic", 114875.90421929007, TestUtils.chiSquare(exp, obs), 1E-9); }
@Test public void testRootLogLikelihood() { // positive where k11 is bigger than expected. Assert.assertTrue(TestUtils.rootLogLikelihoodRatio(904, 21060, 1144, 283012) > 0.0); // negative because k11 is lower than expected Assert.assertTrue(TestUtils.rootLogLikelihoodRatio(36, 21928, 60280, 623876) < 0.0); Assert.assertEquals( FastMath.sqrt(2.772589), TestUtils.rootLogLikelihoodRatio(1, 0, 0, 1), 0.000001); Assert.assertEquals( -FastMath.sqrt(2.772589), TestUtils.rootLogLikelihoodRatio(0, 1, 1, 0), 0.000001); Assert.assertEquals( FastMath.sqrt(27.72589), TestUtils.rootLogLikelihoodRatio(10, 0, 0, 10), 0.00001); Assert.assertEquals( FastMath.sqrt(39.33052), TestUtils.rootLogLikelihoodRatio(5, 1995, 0, 100000), 0.00001); Assert.assertEquals( -FastMath.sqrt(39.33052), TestUtils.rootLogLikelihoodRatio(0, 100000, 5, 1995), 0.00001); Assert.assertEquals( FastMath.sqrt(4730.737), TestUtils.rootLogLikelihoodRatio(1000, 1995, 1000, 100000), 0.001); Assert.assertEquals( -FastMath.sqrt(4730.737), TestUtils.rootLogLikelihoodRatio(1000, 100000, 1000, 1995), 0.001); Assert.assertEquals( FastMath.sqrt(5734.343), TestUtils.rootLogLikelihoodRatio(1000, 1000, 1000, 100000), 0.001); Assert.assertEquals( FastMath.sqrt(5714.932), TestUtils.rootLogLikelihoodRatio(1000, 1000, 1000, 99000), 0.001); }
@Test public void testChiSquare() { // Target values computed using R version 1.8.1 // Some assembly required ;-) // Use sum((obs - exp)^2/exp) for the chi-square statistic and // 1 - pchisq(sum((obs - exp)^2/exp), length(obs) - 1) for the p-value long[] observed = {10, 9, 11}; double[] expected = {10, 10, 10}; Assert.assertEquals( "chi-square statistic", 0.2, TestUtils.chiSquare(expected, observed), 10E-12); Assert.assertEquals( "chi-square p-value", 0.904837418036, TestUtils.chiSquareTest(expected, observed), 1E-10); long[] observed1 = {500, 623, 72, 70, 31}; double[] expected1 = {485, 541, 82, 61, 37}; Assert.assertEquals( "chi-square test statistic", 9.023307936427388, TestUtils.chiSquare(expected1, observed1), 1E-10); Assert.assertEquals( "chi-square p-value", 0.06051952647453607, TestUtils.chiSquareTest(expected1, observed1), 1E-9); Assert.assertTrue( "chi-square test reject", TestUtils.chiSquareTest(expected1, observed1, 0.07)); Assert.assertTrue( "chi-square test accept", !TestUtils.chiSquareTest(expected1, observed1, 0.05)); try { TestUtils.chiSquareTest(expected1, observed1, 95); Assert.fail("alpha out of range, OutOfRangeException expected"); } catch (OutOfRangeException ex) { // expected } long[] tooShortObs = {0}; double[] tooShortEx = {1}; try { TestUtils.chiSquare(tooShortEx, tooShortObs); Assert.fail("arguments too short, DimensionMismatchException expected"); } catch (DimensionMismatchException ex) { // expected } // unmatched arrays long[] unMatchedObs = {0, 1, 2, 3}; double[] unMatchedEx = {1, 1, 2}; try { TestUtils.chiSquare(unMatchedEx, unMatchedObs); Assert.fail("arrays have different lengths, DimensionMismatchException expected"); } catch (DimensionMismatchException ex) { // expected } // 0 expected count expected[0] = 0; try { TestUtils.chiSquareTest(expected, observed, .01); Assert.fail("bad expected count, NotStrictlyPositiveException expected"); } catch (NotStrictlyPositiveException ex) { // expected } // negative observed count expected[0] = 1; observed[0] = -1; try { TestUtils.chiSquareTest(expected, observed, .01); Assert.fail("bad expected count, NotPositiveException expected"); } catch (NotPositiveException ex) { // expected } }
@Test public void testTwoSampleTHeterscedastic() { double[] sample1 = {7d, -4d, 18d, 17d, -3d, -5d, 1d, 10d, 11d, -2d}; double[] sample2 = {-1d, 12d, -1d, -3d, 3d, -5d, 5d, 2d, -11d, -1d, -3d}; SummaryStatistics sampleStats1 = new SummaryStatistics(); for (int i = 0; i < sample1.length; i++) { sampleStats1.addValue(sample1[i]); } SummaryStatistics sampleStats2 = new SummaryStatistics(); for (int i = 0; i < sample2.length; i++) { sampleStats2.addValue(sample2[i]); } // Target comparison values computed using R version 1.8.1 (Linux version) Assert.assertEquals( "two sample heteroscedastic t stat", 1.60371728768, TestUtils.t(sample1, sample2), 1E-10); Assert.assertEquals( "two sample heteroscedastic t stat", 1.60371728768, TestUtils.t(sampleStats1, sampleStats2), 1E-10); Assert.assertEquals( "two sample heteroscedastic p value", 0.128839369622, TestUtils.tTest(sample1, sample2), 1E-10); Assert.assertEquals( "two sample heteroscedastic p value", 0.128839369622, TestUtils.tTest(sampleStats1, sampleStats2), 1E-10); Assert.assertTrue( "two sample heteroscedastic t-test reject", TestUtils.tTest(sample1, sample2, 0.2)); Assert.assertTrue( "two sample heteroscedastic t-test reject", TestUtils.tTest(sampleStats1, sampleStats2, 0.2)); Assert.assertTrue( "two sample heteroscedastic t-test accept", !TestUtils.tTest(sample1, sample2, 0.1)); Assert.assertTrue( "two sample heteroscedastic t-test accept", !TestUtils.tTest(sampleStats1, sampleStats2, 0.1)); try { TestUtils.tTest(sample1, sample2, .95); Assert.fail("alpha out of range, OutOfRangeException expected"); } catch (OutOfRangeException ex) { // expected } try { TestUtils.tTest(sampleStats1, sampleStats2, .95); Assert.fail("alpha out of range, OutOfRangeException expected"); } catch (OutOfRangeException ex) { // expected } try { TestUtils.tTest(sample1, tooShortObs, .01); Assert.fail("insufficient data, NumberIsTooSmallException expected"); } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.tTest(sampleStats1, (SummaryStatistics) null, .01); Assert.fail("insufficient data, NullArgumentException expected"); } catch (NullArgumentException ex) { // expected } try { TestUtils.tTest(sample1, tooShortObs); Assert.fail("insufficient data, NumberIsTooSmallException expected"); } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.tTest(sampleStats1, (SummaryStatistics) null); Assert.fail("insufficient data, NullArgumentException expected"); } catch (NullArgumentException ex) { // expected } try { TestUtils.t(sample1, tooShortObs); Assert.fail("insufficient data, NumberIsTooSmallException expected"); } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.t(sampleStats1, (SummaryStatistics) null); Assert.fail("insufficient data, NullArgumentException expected"); } catch (NullArgumentException ex) { // expected } }
@Test public void testOneSampleT() { double[] observed = { 93.0, 103.0, 95.0, 101.0, 91.0, 105.0, 96.0, 94.0, 101.0, 88.0, 98.0, 94.0, 101.0, 92.0, 95.0 }; double mu = 100.0; SummaryStatistics sampleStats = null; sampleStats = new SummaryStatistics(); for (int i = 0; i < observed.length; i++) { sampleStats.addValue(observed[i]); } // Target comparison values computed using R version 1.8.1 (Linux version) Assert.assertEquals("t statistic", -2.81976445346, TestUtils.t(mu, observed), 10E-10); Assert.assertEquals("t statistic", -2.81976445346, TestUtils.t(mu, sampleStats), 10E-10); Assert.assertEquals("p value", 0.0136390585873, TestUtils.tTest(mu, observed), 10E-10); Assert.assertEquals("p value", 0.0136390585873, TestUtils.tTest(mu, sampleStats), 10E-10); try { TestUtils.t(mu, (double[]) null); Assert.fail("arguments too short, NullArgumentException expected"); } catch (NullArgumentException ex) { // expected } try { TestUtils.t(mu, (SummaryStatistics) null); Assert.fail("arguments too short, NullArgumentException expected"); } catch (NullArgumentException ex) { // expected } try { TestUtils.t(mu, emptyObs); Assert.fail("arguments too short, NumberIsTooSmallException expected"); } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.t(mu, emptyStats); Assert.fail("arguments too short, NumberIsTooSmallException expected"); } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.t(mu, tooShortObs); Assert.fail("insufficient data to compute t statistic, NumberIsTooSmallException expected"); } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.tTest(mu, tooShortObs); Assert.fail("insufficient data to perform t test, NumberIsTooSmallException expected"); } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.t(mu, (SummaryStatistics) null); Assert.fail("insufficient data to compute t statistic, NullArgumentException expected"); } catch (NullArgumentException ex) { // expected } try { TestUtils.tTest(mu, (SummaryStatistics) null); Assert.fail("insufficient data to perform t test, NullArgumentException expected"); } catch (NullArgumentException ex) { // expected } }
@Test public void testChiSquareIndependence() { // Target values computed using R version 1.8.1 long[][] counts = {{40, 22, 43}, {91, 21, 28}, {60, 10, 22}}; Assert.assertEquals( "chi-square test statistic", 22.709027688, TestUtils.chiSquare(counts), 1E-9); Assert.assertEquals( "chi-square p-value", 0.000144751460134, TestUtils.chiSquareTest(counts), 1E-9); Assert.assertTrue("chi-square test reject", TestUtils.chiSquareTest(counts, 0.0002)); Assert.assertTrue("chi-square test accept", !TestUtils.chiSquareTest(counts, 0.0001)); long[][] counts2 = {{10, 15}, {30, 40}, {60, 90}}; Assert.assertEquals( "chi-square test statistic", 0.168965517241, TestUtils.chiSquare(counts2), 1E-9); Assert.assertEquals( "chi-square p-value", 0.918987499852, TestUtils.chiSquareTest(counts2), 1E-9); Assert.assertTrue("chi-square test accept", !TestUtils.chiSquareTest(counts2, 0.1)); // ragged input array long[][] counts3 = {{40, 22, 43}, {91, 21, 28}, {60, 10}}; try { TestUtils.chiSquare(counts3); Assert.fail("Expecting DimensionMismatchException"); } catch (DimensionMismatchException ex) { // expected } // insufficient data long[][] counts4 = {{40, 22, 43}}; try { TestUtils.chiSquare(counts4); Assert.fail("Expecting DimensionMismatchException"); } catch (DimensionMismatchException ex) { // expected } long[][] counts5 = {{40}, {40}, {30}, {10}}; try { TestUtils.chiSquare(counts5); Assert.fail("Expecting DimensionMismatchException"); } catch (DimensionMismatchException ex) { // expected } // negative counts long[][] counts6 = {{10, -2}, {30, 40}, {60, 90}}; try { TestUtils.chiSquare(counts6); Assert.fail("Expecting NotPositiveException"); } catch (NotPositiveException ex) { // expected } // bad alpha try { TestUtils.chiSquareTest(counts, 0); Assert.fail("Expecting OutOfRangeException"); } catch (OutOfRangeException ex) { // expected } }