@Test
  public void testTwoSampleTHomoscedastic() {
    double[] sample1 = {2, 4, 6, 8, 10, 97};
    double[] sample2 = {4, 6, 8, 10, 16};
    SummaryStatistics sampleStats1 = new SummaryStatistics();
    for (int i = 0; i < sample1.length; i++) {
      sampleStats1.addValue(sample1[i]);
    }
    SummaryStatistics sampleStats2 = new SummaryStatistics();
    for (int i = 0; i < sample2.length; i++) {
      sampleStats2.addValue(sample2[i]);
    }

    // Target comparison values computed using R version 1.8.1 (Linux version)
    Assert.assertEquals(
        "two sample homoscedastic t stat",
        0.73096310086,
        TestUtils.homoscedasticT(sample1, sample2),
        10E-11);
    Assert.assertEquals(
        "two sample homoscedastic p value",
        0.4833963785,
        TestUtils.homoscedasticTTest(sampleStats1, sampleStats2),
        1E-10);
    Assert.assertTrue(
        "two sample homoscedastic t-test reject",
        TestUtils.homoscedasticTTest(sample1, sample2, 0.49));
    Assert.assertTrue(
        "two sample homoscedastic t-test accept",
        !TestUtils.homoscedasticTTest(sample1, sample2, 0.48));
  }
  @Test
  public void testOneSampleTTest() {
    double[] oneSidedP = {
      2d, 0d, 6d, 6d, 3d, 3d, 2d, 3d, -6d, 6d, 6d, 6d, 3d, 0d, 1d, 1d, 0d, 2d, 3d, 3d
    };
    SummaryStatistics oneSidedPStats = new SummaryStatistics();
    for (int i = 0; i < oneSidedP.length; i++) {
      oneSidedPStats.addValue(oneSidedP[i]);
    }
    // Target comparison values computed using R version 1.8.1 (Linux version)
    Assert.assertEquals("one sample t stat", 3.86485535541, TestUtils.t(0d, oneSidedP), 10E-10);
    Assert.assertEquals("one sample t stat", 3.86485535541, TestUtils.t(0d, oneSidedPStats), 1E-10);
    Assert.assertEquals(
        "one sample p value", 0.000521637019637, TestUtils.tTest(0d, oneSidedP) / 2d, 10E-10);
    Assert.assertEquals(
        "one sample p value", 0.000521637019637, TestUtils.tTest(0d, oneSidedPStats) / 2d, 10E-5);
    Assert.assertTrue("one sample t-test reject", TestUtils.tTest(0d, oneSidedP, 0.01));
    Assert.assertTrue("one sample t-test reject", TestUtils.tTest(0d, oneSidedPStats, 0.01));
    Assert.assertTrue("one sample t-test accept", !TestUtils.tTest(0d, oneSidedP, 0.0001));
    Assert.assertTrue("one sample t-test accept", !TestUtils.tTest(0d, oneSidedPStats, 0.0001));

    try {
      TestUtils.tTest(0d, oneSidedP, 95);
      Assert.fail("alpha out of range, OutOfRangeException expected");
    } catch (OutOfRangeException ex) {
      // expected
    }

    try {
      TestUtils.tTest(0d, oneSidedPStats, 95);
      Assert.fail("alpha out of range, OutOfRangeException expected");
    } catch (OutOfRangeException ex) {
      // expected
    }
  }
  @Test
  public void testSmallSamples() {
    double[] sample1 = {1d, 3d};
    double[] sample2 = {4d, 5d};

    // Target values computed using R, version 1.8.1 (linux version)
    Assert.assertEquals(-2.2360679775, TestUtils.t(sample1, sample2), 1E-10);
    Assert.assertEquals(0.198727388935, TestUtils.tTest(sample1, sample2), 1E-10);
  }
 /** Contingency table containing zeros - PR # 32531 */
 @Test
 public void testChiSquareZeroCount() {
   // Target values computed using R version 1.8.1
   long[][] counts = {{40, 0, 4}, {91, 1, 2}, {60, 2, 0}};
   Assert.assertEquals(
       "chi-square test statistic", 9.67444662263, TestUtils.chiSquare(counts), 1E-9);
   Assert.assertEquals(
       "chi-square p-value", 0.0462835770603, TestUtils.chiSquareTest(counts), 1E-9);
 }
 @Test
 public void testKSOneSample() throws Exception {
   final NormalDistribution unitNormal = new NormalDistribution(0d, 1d);
   final double[] sample = KolmogorovSmirnovTestTest.gaussian;
   final double tol = KolmogorovSmirnovTestTest.TOLERANCE;
   Assert.assertEquals(
       0.3172069207622391, TestUtils.kolmogorovSmirnovTest(unitNormal, sample), tol);
   Assert.assertEquals(
       0.0932947561266756, TestUtils.kolmogorovSmirnovStatistic(unitNormal, sample), tol);
 }
  @Test
  public void testGTestGoodnesOfFit() throws Exception {
    double[] exp = new double[] {0.54d, 0.40d, 0.05d, 0.01d};

    long[] obs = new long[] {70, 79, 3, 4};
    Assert.assertEquals("G test statistic", 13.144799, TestUtils.g(exp, obs), 1E-5);
    double p_gtgf = TestUtils.gTest(exp, obs);
    Assert.assertEquals("g-Test p-value", 0.004333, p_gtgf, 1E-5);

    Assert.assertTrue(TestUtils.gTest(exp, obs, 0.05));
  }
 @Test
 public void testOneWayAnovaUtils() {
   classes.add(classA);
   classes.add(classB);
   classes.add(classC);
   Assert.assertEquals(
       oneWayAnova.anovaFValue(classes), TestUtils.oneWayAnovaFValue(classes), 10E-12);
   Assert.assertEquals(
       oneWayAnova.anovaPValue(classes), TestUtils.oneWayAnovaPValue(classes), 10E-12);
   Assert.assertEquals(
       oneWayAnova.anovaTest(classes, 0.01), TestUtils.oneWayAnovaTest(classes, 0.01));
 }
  @Test
  public void testPaired() {
    double[] sample1 = {1d, 3d, 5d, 7d};
    double[] sample2 = {0d, 6d, 11d, 2d};
    double[] sample3 = {5d, 7d, 8d, 10d};

    // Target values computed using R, version 1.8.1 (linux version)
    Assert.assertEquals(-0.3133, TestUtils.pairedT(sample1, sample2), 1E-4);
    Assert.assertEquals(0.774544295819, TestUtils.pairedTTest(sample1, sample2), 1E-10);
    Assert.assertEquals(0.001208, TestUtils.pairedTTest(sample1, sample3), 1E-6);
    Assert.assertFalse(TestUtils.pairedTTest(sample1, sample3, .001));
    Assert.assertTrue(TestUtils.pairedTTest(sample1, sample3, .002));
  }
 @Test
 public void testKSTwoSample() throws Exception {
   final double tol = KolmogorovSmirnovTestTest.TOLERANCE;
   final double[] smallSample1 = {6, 7, 9, 13, 19, 21, 22, 23, 24};
   final double[] smallSample2 = {10, 11, 12, 16, 20, 27, 28, 32, 44, 54};
   Assert.assertEquals(
       0.105577085453247, TestUtils.kolmogorovSmirnovTest(smallSample1, smallSample2, false), tol);
   final double d = TestUtils.kolmogorovSmirnovStatistic(smallSample1, smallSample2);
   Assert.assertEquals(0.5, d, tol);
   Assert.assertEquals(
       0.105577085453247,
       TestUtils.exactP(d, smallSample1.length, smallSample2.length, false),
       tol);
 }
  @Test
  public void testGTestIndependance() throws Exception {
    long[] obs1 = new long[] {268, 199, 42};

    long[] obs2 = new long[] {807, 759, 184};

    double g = TestUtils.gDataSetsComparison(obs1, obs2);

    Assert.assertEquals("G test statistic", 7.3008170, g, 1E-4);
    double p_gti = TestUtils.gTestDataSetsComparison(obs1, obs2);

    Assert.assertEquals("g-Test p-value", 0.0259805, p_gti, 1E-4);
    Assert.assertTrue(TestUtils.gTestDataSetsComparison(obs1, obs2, 0.05));
  }
  @Test
  public void testChiSquareLargeTestStatistic() {
    double[] exp =
        new double[] {
          3389119.5, 649136.6, 285745.4, 25357364.76, 11291189.78, 543628.0, 232921.0, 437665.75
        };

    long[] obs = new long[] {2372383, 584222, 257170, 17750155, 7903832, 489265, 209628, 393899};
    org.apache.commons.math4.stat.inference.ChiSquareTest csti =
        new org.apache.commons.math4.stat.inference.ChiSquareTest();
    double cst = csti.chiSquareTest(exp, obs);
    Assert.assertEquals("chi-square p-value", 0.0, cst, 1E-3);
    Assert.assertEquals(
        "chi-square test statistic", 114875.90421929007, TestUtils.chiSquare(exp, obs), 1E-9);
  }
  @Test
  public void testRootLogLikelihood() {
    // positive where k11 is bigger than expected.
    Assert.assertTrue(TestUtils.rootLogLikelihoodRatio(904, 21060, 1144, 283012) > 0.0);

    // negative because k11 is lower than expected
    Assert.assertTrue(TestUtils.rootLogLikelihoodRatio(36, 21928, 60280, 623876) < 0.0);

    Assert.assertEquals(
        FastMath.sqrt(2.772589), TestUtils.rootLogLikelihoodRatio(1, 0, 0, 1), 0.000001);
    Assert.assertEquals(
        -FastMath.sqrt(2.772589), TestUtils.rootLogLikelihoodRatio(0, 1, 1, 0), 0.000001);
    Assert.assertEquals(
        FastMath.sqrt(27.72589), TestUtils.rootLogLikelihoodRatio(10, 0, 0, 10), 0.00001);

    Assert.assertEquals(
        FastMath.sqrt(39.33052), TestUtils.rootLogLikelihoodRatio(5, 1995, 0, 100000), 0.00001);
    Assert.assertEquals(
        -FastMath.sqrt(39.33052), TestUtils.rootLogLikelihoodRatio(0, 100000, 5, 1995), 0.00001);

    Assert.assertEquals(
        FastMath.sqrt(4730.737), TestUtils.rootLogLikelihoodRatio(1000, 1995, 1000, 100000), 0.001);
    Assert.assertEquals(
        -FastMath.sqrt(4730.737),
        TestUtils.rootLogLikelihoodRatio(1000, 100000, 1000, 1995),
        0.001);

    Assert.assertEquals(
        FastMath.sqrt(5734.343), TestUtils.rootLogLikelihoodRatio(1000, 1000, 1000, 100000), 0.001);
    Assert.assertEquals(
        FastMath.sqrt(5714.932), TestUtils.rootLogLikelihoodRatio(1000, 1000, 1000, 99000), 0.001);
  }
  @Test
  public void testChiSquare() {

    // Target values computed using R version 1.8.1
    // Some assembly required ;-)
    //      Use sum((obs - exp)^2/exp) for the chi-square statistic and
    //      1 - pchisq(sum((obs - exp)^2/exp), length(obs) - 1) for the p-value

    long[] observed = {10, 9, 11};
    double[] expected = {10, 10, 10};
    Assert.assertEquals(
        "chi-square statistic", 0.2, TestUtils.chiSquare(expected, observed), 10E-12);
    Assert.assertEquals(
        "chi-square p-value", 0.904837418036, TestUtils.chiSquareTest(expected, observed), 1E-10);

    long[] observed1 = {500, 623, 72, 70, 31};
    double[] expected1 = {485, 541, 82, 61, 37};
    Assert.assertEquals(
        "chi-square test statistic",
        9.023307936427388,
        TestUtils.chiSquare(expected1, observed1),
        1E-10);
    Assert.assertEquals(
        "chi-square p-value",
        0.06051952647453607,
        TestUtils.chiSquareTest(expected1, observed1),
        1E-9);
    Assert.assertTrue(
        "chi-square test reject", TestUtils.chiSquareTest(expected1, observed1, 0.07));
    Assert.assertTrue(
        "chi-square test accept", !TestUtils.chiSquareTest(expected1, observed1, 0.05));

    try {
      TestUtils.chiSquareTest(expected1, observed1, 95);
      Assert.fail("alpha out of range, OutOfRangeException expected");
    } catch (OutOfRangeException ex) {
      // expected
    }

    long[] tooShortObs = {0};
    double[] tooShortEx = {1};
    try {
      TestUtils.chiSquare(tooShortEx, tooShortObs);
      Assert.fail("arguments too short, DimensionMismatchException expected");
    } catch (DimensionMismatchException ex) {
      // expected
    }

    // unmatched arrays
    long[] unMatchedObs = {0, 1, 2, 3};
    double[] unMatchedEx = {1, 1, 2};
    try {
      TestUtils.chiSquare(unMatchedEx, unMatchedObs);
      Assert.fail("arrays have different lengths, DimensionMismatchException expected");
    } catch (DimensionMismatchException ex) {
      // expected
    }

    // 0 expected count
    expected[0] = 0;
    try {
      TestUtils.chiSquareTest(expected, observed, .01);
      Assert.fail("bad expected count, NotStrictlyPositiveException expected");
    } catch (NotStrictlyPositiveException ex) {
      // expected
    }

    // negative observed count
    expected[0] = 1;
    observed[0] = -1;
    try {
      TestUtils.chiSquareTest(expected, observed, .01);
      Assert.fail("bad expected count, NotPositiveException expected");
    } catch (NotPositiveException ex) {
      // expected
    }
  }
  @Test
  public void testTwoSampleTHeterscedastic() {
    double[] sample1 = {7d, -4d, 18d, 17d, -3d, -5d, 1d, 10d, 11d, -2d};
    double[] sample2 = {-1d, 12d, -1d, -3d, 3d, -5d, 5d, 2d, -11d, -1d, -3d};
    SummaryStatistics sampleStats1 = new SummaryStatistics();
    for (int i = 0; i < sample1.length; i++) {
      sampleStats1.addValue(sample1[i]);
    }
    SummaryStatistics sampleStats2 = new SummaryStatistics();
    for (int i = 0; i < sample2.length; i++) {
      sampleStats2.addValue(sample2[i]);
    }

    // Target comparison values computed using R version 1.8.1 (Linux version)
    Assert.assertEquals(
        "two sample heteroscedastic t stat", 1.60371728768, TestUtils.t(sample1, sample2), 1E-10);
    Assert.assertEquals(
        "two sample heteroscedastic t stat",
        1.60371728768,
        TestUtils.t(sampleStats1, sampleStats2),
        1E-10);
    Assert.assertEquals(
        "two sample heteroscedastic p value",
        0.128839369622,
        TestUtils.tTest(sample1, sample2),
        1E-10);
    Assert.assertEquals(
        "two sample heteroscedastic p value",
        0.128839369622,
        TestUtils.tTest(sampleStats1, sampleStats2),
        1E-10);
    Assert.assertTrue(
        "two sample heteroscedastic t-test reject", TestUtils.tTest(sample1, sample2, 0.2));
    Assert.assertTrue(
        "two sample heteroscedastic t-test reject",
        TestUtils.tTest(sampleStats1, sampleStats2, 0.2));
    Assert.assertTrue(
        "two sample heteroscedastic t-test accept", !TestUtils.tTest(sample1, sample2, 0.1));
    Assert.assertTrue(
        "two sample heteroscedastic t-test accept",
        !TestUtils.tTest(sampleStats1, sampleStats2, 0.1));

    try {
      TestUtils.tTest(sample1, sample2, .95);
      Assert.fail("alpha out of range, OutOfRangeException expected");
    } catch (OutOfRangeException ex) {
      // expected
    }

    try {
      TestUtils.tTest(sampleStats1, sampleStats2, .95);
      Assert.fail("alpha out of range, OutOfRangeException expected");
    } catch (OutOfRangeException ex) {
      // expected
    }

    try {
      TestUtils.tTest(sample1, tooShortObs, .01);
      Assert.fail("insufficient data, NumberIsTooSmallException expected");
    } catch (NumberIsTooSmallException ex) {
      // expected
    }

    try {
      TestUtils.tTest(sampleStats1, (SummaryStatistics) null, .01);
      Assert.fail("insufficient data, NullArgumentException expected");
    } catch (NullArgumentException ex) {
      // expected
    }

    try {
      TestUtils.tTest(sample1, tooShortObs);
      Assert.fail("insufficient data, NumberIsTooSmallException expected");
    } catch (NumberIsTooSmallException ex) {
      // expected
    }

    try {
      TestUtils.tTest(sampleStats1, (SummaryStatistics) null);
      Assert.fail("insufficient data, NullArgumentException expected");
    } catch (NullArgumentException ex) {
      // expected
    }

    try {
      TestUtils.t(sample1, tooShortObs);
      Assert.fail("insufficient data, NumberIsTooSmallException expected");
    } catch (NumberIsTooSmallException ex) {
      // expected
    }

    try {
      TestUtils.t(sampleStats1, (SummaryStatistics) null);
      Assert.fail("insufficient data, NullArgumentException expected");
    } catch (NullArgumentException ex) {
      // expected
    }
  }
  @Test
  public void testOneSampleT() {
    double[] observed = {
      93.0, 103.0, 95.0, 101.0, 91.0, 105.0, 96.0, 94.0, 101.0, 88.0, 98.0, 94.0, 101.0, 92.0, 95.0
    };
    double mu = 100.0;
    SummaryStatistics sampleStats = null;
    sampleStats = new SummaryStatistics();
    for (int i = 0; i < observed.length; i++) {
      sampleStats.addValue(observed[i]);
    }

    // Target comparison values computed using R version 1.8.1 (Linux version)
    Assert.assertEquals("t statistic", -2.81976445346, TestUtils.t(mu, observed), 10E-10);
    Assert.assertEquals("t statistic", -2.81976445346, TestUtils.t(mu, sampleStats), 10E-10);
    Assert.assertEquals("p value", 0.0136390585873, TestUtils.tTest(mu, observed), 10E-10);
    Assert.assertEquals("p value", 0.0136390585873, TestUtils.tTest(mu, sampleStats), 10E-10);

    try {
      TestUtils.t(mu, (double[]) null);
      Assert.fail("arguments too short, NullArgumentException expected");
    } catch (NullArgumentException ex) {
      // expected
    }

    try {
      TestUtils.t(mu, (SummaryStatistics) null);
      Assert.fail("arguments too short, NullArgumentException expected");
    } catch (NullArgumentException ex) {
      // expected
    }

    try {
      TestUtils.t(mu, emptyObs);
      Assert.fail("arguments too short, NumberIsTooSmallException expected");
    } catch (NumberIsTooSmallException ex) {
      // expected
    }

    try {
      TestUtils.t(mu, emptyStats);
      Assert.fail("arguments too short, NumberIsTooSmallException expected");
    } catch (NumberIsTooSmallException ex) {
      // expected
    }

    try {
      TestUtils.t(mu, tooShortObs);
      Assert.fail("insufficient data to compute t statistic, NumberIsTooSmallException expected");
    } catch (NumberIsTooSmallException ex) {
      // expected
    }
    try {
      TestUtils.tTest(mu, tooShortObs);
      Assert.fail("insufficient data to perform t test, NumberIsTooSmallException expected");
    } catch (NumberIsTooSmallException ex) {
      // expected
    }

    try {
      TestUtils.t(mu, (SummaryStatistics) null);
      Assert.fail("insufficient data to compute t statistic, NullArgumentException expected");
    } catch (NullArgumentException ex) {
      // expected
    }
    try {
      TestUtils.tTest(mu, (SummaryStatistics) null);
      Assert.fail("insufficient data to perform t test, NullArgumentException expected");
    } catch (NullArgumentException ex) {
      // expected
    }
  }
  @Test
  public void testChiSquareIndependence() {

    // Target values computed using R version 1.8.1

    long[][] counts = {{40, 22, 43}, {91, 21, 28}, {60, 10, 22}};
    Assert.assertEquals(
        "chi-square test statistic", 22.709027688, TestUtils.chiSquare(counts), 1E-9);
    Assert.assertEquals(
        "chi-square p-value", 0.000144751460134, TestUtils.chiSquareTest(counts), 1E-9);
    Assert.assertTrue("chi-square test reject", TestUtils.chiSquareTest(counts, 0.0002));
    Assert.assertTrue("chi-square test accept", !TestUtils.chiSquareTest(counts, 0.0001));

    long[][] counts2 = {{10, 15}, {30, 40}, {60, 90}};
    Assert.assertEquals(
        "chi-square test statistic", 0.168965517241, TestUtils.chiSquare(counts2), 1E-9);
    Assert.assertEquals(
        "chi-square p-value", 0.918987499852, TestUtils.chiSquareTest(counts2), 1E-9);
    Assert.assertTrue("chi-square test accept", !TestUtils.chiSquareTest(counts2, 0.1));

    // ragged input array
    long[][] counts3 = {{40, 22, 43}, {91, 21, 28}, {60, 10}};
    try {
      TestUtils.chiSquare(counts3);
      Assert.fail("Expecting DimensionMismatchException");
    } catch (DimensionMismatchException ex) {
      // expected
    }

    // insufficient data
    long[][] counts4 = {{40, 22, 43}};
    try {
      TestUtils.chiSquare(counts4);
      Assert.fail("Expecting DimensionMismatchException");
    } catch (DimensionMismatchException ex) {
      // expected
    }
    long[][] counts5 = {{40}, {40}, {30}, {10}};
    try {
      TestUtils.chiSquare(counts5);
      Assert.fail("Expecting DimensionMismatchException");
    } catch (DimensionMismatchException ex) {
      // expected
    }

    // negative counts
    long[][] counts6 = {{10, -2}, {30, 40}, {60, 90}};
    try {
      TestUtils.chiSquare(counts6);
      Assert.fail("Expecting NotPositiveException");
    } catch (NotPositiveException ex) {
      // expected
    }

    // bad alpha
    try {
      TestUtils.chiSquareTest(counts, 0);
      Assert.fail("Expecting OutOfRangeException");
    } catch (OutOfRangeException ex) {
      // expected
    }
  }