/** * Creates a LZ09_F2 problem instance * * @param solutionType The solution type must "Real" or "BinaryReal". */ public LZ09_F2(String solutionType, Integer ptype, Integer dtype, Integer ltype) throws ClassNotFoundException { numberOfVariables_ = 30; numberOfObjectives_ = 2; numberOfConstraints_ = 0; problemName_ = "LZ09_F2"; LZ09_ = new LZ09(numberOfVariables_, numberOfObjectives_, ptype, dtype, ltype); lowerLimit_ = new double[numberOfVariables_]; upperLimit_ = new double[numberOfVariables_]; lowerLimit_[0] = 0.0; upperLimit_[0] = 1.0; for (int var = 1; var < numberOfVariables_; var++) { lowerLimit_[var] = -1.0; upperLimit_[var] = 1.0; } // for if (solutionType.compareTo("BinaryReal") == 0) solutionType_ = new BinaryRealSolutionType(this); else if (solutionType.compareTo("Real") == 0) solutionType_ = new RealSolutionType(this); else { System.out.println("Error: solution type " + solutionType + " invalid"); System.exit(-1); } } // LZ09_F2
public static void main(String[] args) throws JMException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator crossover; // Crossover operator Operator mutation; // Mutation operator Operator selection; // Selection operator // int bits ; // Length of bit string in the OneMax problem // bits = 512 ; // problem = new OneMax(bits); problem = new Sphere("Real", 20); // problem = new Easom("Real") ; // problem = new Griewank("Real", 10) ; algorithm = new DE(problem); // Asynchronous cGA /* Algorithm parameters*/ algorithm.setInputParameter("populationSize", 100); algorithm.setInputParameter("maxEvaluations", 1000000); // Crossover operator crossover = CrossoverFactory.getCrossoverOperator("DifferentialEvolutionCrossover"); crossover.setParameter("CR", 0.1); crossover.setParameter("F", 0.5); crossover.setParameter("DE_VARIANT", "rand/1/bin"); // Add the operators to the algorithm selection = SelectionFactory.getSelectionOperator("DifferentialEvolutionSelection"); algorithm.addOperator("crossover", crossover); algorithm.addOperator("selection", selection); /* Execute the Algorithm */ long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; System.out.println("Total execution time: " + estimatedTime); /* Log messages */ System.out.println("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); System.out.println("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); } // main
double fitnessFunction(Solution individual, double[] lambda) { double fitness; fitness = 0.0; if (functionType_.equals("_TCHE1")) { double maxFun = -1.0e+30; for (int n = 0; n < problem_.getNumberOfObjectives(); n++) { double diff = Math.abs(individual.getObjective(n) - z_[n]); double feval; if (lambda[n] == 0) { feval = 0.0001 * diff; } else { feval = diff * lambda[n]; } if (feval > maxFun) { maxFun = feval; } } // for fitness = maxFun; } // if else if (functionType_.equals("_AGG")) { double sum = 0.0; for (int n = 0; n < problem_.getNumberOfObjectives(); n++) { sum += (lambda[n]) * individual.getObjective(n); } fitness = sum; } else if (functionType_.equals("_PBI")) { double d1, d2, nl; double theta = 5.0; d1 = d2 = nl = 0.0; for (int i = 0; i < problem_.getNumberOfObjectives(); i++) { d1 += (individual.getObjective(i) - z_[i]) * lambda[i]; nl += Math.pow(lambda[i], 2.0); } nl = Math.sqrt(nl); d1 = Math.abs(d1) / nl; for (int i = 0; i < problem_.getNumberOfObjectives(); i++) { d2 += Math.pow((individual.getObjective(i) - z_[i]) - d1 * (lambda[i] / nl), 2.0); } d2 = Math.sqrt(d2); fitness = (d1 + theta * d2); } else { System.out.println("MOEAD.fitnessFunction: unknown type " + functionType_); System.exit(-1); } return fitness; } // fitnessEvaluation
public void readProblem(String fileName) throws FileNotFoundException, IOException { Reader inputFile = new BufferedReader(new InputStreamReader(new FileInputStream(fileName))); StreamTokenizer token = new StreamTokenizer(inputFile); try { token.nextToken(); numberOfCities_ = (int) token.nval; distanceMatrix_ = new double[numberOfCities_][numberOfCities_]; flujo1 = new double[numberOfCities_][numberOfCities_]; flujo2 = new double[numberOfCities_][numberOfCities_]; // Cargar objetivo 1 for (int k = 0; k < numberOfCities_; k++) { for (int j = 0; j < numberOfCities_; j++) { token.nextToken(); flujo1[k][j] = token.nval; } } // Cargar objetivo 2 for (int k = 0; k < numberOfCities_; k++) { for (int j = 0; j < numberOfCities_; j++) { token.nextToken(); flujo2[k][j] = token.nval; } } // Carga de distancias for (int k = 0; k < numberOfCities_; k++) { for (int j = 0; j < numberOfCities_; j++) { token.nextToken(); distanceMatrix_[k][j] = token.nval; } } } // try catch (Exception e) { System.err.println("QAP.readProblem(): error when reading data file " + e); System.exit(1); } // catch } // readProblem
/** * Constructor. Creates a default instance of the Srinivas problem * * @param solutionType The solution type must "Real" or "BinaryReal". */ public Srinivas(String solutionType) throws ClassNotFoundException { numberOfVariables_ = 2; numberOfObjectives_ = 2; numberOfConstraints_ = 2; problemName_ = "Srinivas"; lowerLimit_ = new double[numberOfVariables_]; upperLimit_ = new double[numberOfVariables_]; for (int var = 0; var < numberOfVariables_; var++) { lowerLimit_[var] = -20.0; upperLimit_[var] = 20.0; } // for if (solutionType.compareTo("BinaryReal") == 0) solutionType_ = new BinaryRealSolutionType(this); else if (solutionType.compareTo("Real") == 0) solutionType_ = new RealSolutionType(this); else { System.out.println("Error: solution type " + solutionType + " invalid"); System.exit(-1); } } // Srinivas
public void initNeighborhood() { double[] x = new double[populationSize]; int[] idx = new int[populationSize]; for (int i = 0; i < populationSize; i++) { // calculate the distances based on weight vectors for (int j = 0; j < populationSize; j++) { x[j] = Utils.distVector(lambda_[i], lambda_[j]); // x[j] = dist_vector(population[i].namda,population[j].namda); idx[j] = j; // System.out.println("x["+j+"]: "+x[j]+ ". idx["+j+"]: "+idx[j]) ; } // for // find 'niche' nearest neighboring subproblems Utils.minFastSort(x, idx, populationSize, T_); // minfastsort(x,idx,population.size(),niche); System.arraycopy(idx, 0, neighborhood_[i], 0, T_); } // for } // initNeighborhood
/** * Creates a new DTLZ5 problem instance * * @param numberOfVariables Number of variables * @param numberOfObjectives Number of objective functions * @param solutionType The solution type must "Real" or "BinaryReal". */ public DTLZ5(String solutionType, Integer numberOfVariables, Integer numberOfObjectives) throws ClassNotFoundException { numberOfVariables_ = numberOfVariables.intValue(); numberOfObjectives_ = numberOfObjectives.intValue(); numberOfConstraints_ = 0; problemName_ = "DTLZ5"; lowerLimit_ = new double[numberOfVariables_]; upperLimit_ = new double[numberOfVariables_]; for (int var = 0; var < numberOfVariables_; var++) { lowerLimit_[var] = 0.0; upperLimit_[var] = 1.0; } if (solutionType.compareTo("BinaryReal") == 0) solutionType_ = new BinaryRealSolutionType(this); else if (solutionType.compareTo("Real") == 0) solutionType_ = new RealSolutionType(this); else { System.out.println("Error: solution type " + solutionType + " invalid"); System.exit(-1); } } // DTLZ5
/** * Creates a new instance of problem CEC2009_UF10. * * @param numberOfVariables Number of variables. * @param solutionType The solution type must "Real" or "BinaryReal". */ public CEC2009_UF10(String solutionType, Integer numberOfVariables) throws ClassNotFoundException { numberOfVariables_ = numberOfVariables.intValue(); numberOfObjectives_ = 3; numberOfConstraints_ = 0; problemName_ = "CEC2009_UF10"; upperLimit_ = new double[numberOfVariables_]; lowerLimit_ = new double[numberOfVariables_]; // Establishes upper and lower limits for the variables for (int var = 0; var < numberOfVariables_; var++) { lowerLimit_[var] = 0.0; upperLimit_[var] = 1.0; } // for if (solutionType.compareTo("BinaryReal") == 0) solutionType_ = new BinaryRealSolutionType(this); else if (solutionType.compareTo("Real") == 0) solutionType_ = new RealSolutionType(this); else { System.out.println("Error: solution type " + solutionType + " invalid"); System.exit(-1); } } // CEC2009_UF10
/** * @param args Command line arguments. The first (optional) argument specifies the problem to * solve. * @throws JMException * @throws IOException * @throws SecurityException Usage: three options - jmetal.metaheuristics.mocell.MOCell_main - * jmetal.metaheuristics.mocell.MOCell_main problemName - * jmetal.metaheuristics.mocell.MOCell_main problemName ParetoFrontFile */ public static void main(String[] args) throws JMException, IOException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator mutation; // Mutation operator QualityIndicator indicators; // Object to get quality indicators // Logger object and file to store log messages logger_ = Configuration.logger_; fileHandler_ = new FileHandler("PAES_main.log"); logger_.addHandler(fileHandler_); indicators = null; if (args.length == 1) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); } // if else if (args.length == 2) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); indicators = new QualityIndicator(problem, args[1]); } // if else { // Default problem problem = new Kursawe("ArrayReal", 3); // problem = new Fonseca("Real"); // problem = new Kursawe("BinaryReal",3); // problem = new Water("Real"); // problem = new ZDT4("Real", 1000); // problem = new WFG1("Real"); // problem = new DTLZ1("Real"); // problem = new OKA2("Real") ; } // else algorithm = new PAES(problem); // Algorithm parameters algorithm.setInputParameter("archiveSize", 100); algorithm.setInputParameter("biSections", 5); algorithm.setInputParameter("maxEvaluations", 25000); // Mutation (Real variables) mutation = MutationFactory.getMutationOperator("PolynomialMutation"); mutation.setParameter("probability", 1.0 / problem.getNumberOfVariables()); mutation.setParameter("distributionIndex", 20.0); // Mutation (BinaryReal variables) // mutation = MutationFactory.getMutationOperator("BitFlipMutation"); // mutation.setParameter("probability",0.1); // Add the operators to the algorithm algorithm.addOperator("mutation", mutation); // Execute the Algorithm long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; // Result messages // STEP 8. Print the results logger_.info("Total execution time: " + estimatedTime + "ms"); logger_.info("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); logger_.info("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); if (indicators != null) { logger_.info("Quality indicators"); logger_.info("Hypervolume: " + indicators.getHypervolume(population)); logger_.info("GD : " + indicators.getGD(population)); logger_.info("IGD : " + indicators.getIGD(population)); logger_.info("Spread : " + indicators.getSpread(population)); logger_.info("Epsilon : " + indicators.getEpsilon(population)); } // if } // main
/** * @param args Command line arguments. * @throws JMException * @throws IOException * @throws SecurityException Usage: three choices - jmetal.metaheuristics.nsgaII.NSGAII_main - * jmetal.metaheuristics.nsgaII.NSGAII_main problemName - * jmetal.metaheuristics.nsgaII.NSGAII_main problemName paretoFrontFile */ public static void main(String[] args) throws JMException, IOException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator crossover; // Crossover operator Operator mutation; // Mutation operator Operator selection; // Selection operator QualityIndicator indicators; // Object to get quality indicators // Logger object and file to store log messages logger_ = Configuration.logger_; fileHandler_ = new FileHandler("IBEA.log"); logger_.addHandler(fileHandler_); indicators = null; if (args.length == 1) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); } // if else if (args.length == 2) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); indicators = new QualityIndicator(problem, args[1]); } // if else { // Default problem problem = new Kursawe("Real", 3); // problem = new Kursawe("BinaryReal", 3); // problem = new Water("Real"); // problem = new ZDT1("ArrayReal", 100); // problem = new ConstrEx("Real"); // problem = new DTLZ1("Real"); // problem = new OKA2("Real") ; } // else algorithm = new IBEA(problem); // Algorithm parameters algorithm.setInputParameter("populationSize", 100); algorithm.setInputParameter("archiveSize", 100); algorithm.setInputParameter("maxEvaluations", 25000); // Mutation and Crossover for Real codification crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover"); crossover.setParameter("probability", 1.0); crossover.setParameter("distribuitionIndex", 20.0); mutation = MutationFactory.getMutationOperator("PolynomialMutation"); mutation.setParameter("probability", 1.0 / problem.getNumberOfVariables()); mutation.setParameter("distributionIndex", 20.0); /* Mutation and Crossover Binary codification */ /* crossover = CrossoverFactory.getCrossoverOperator("SinglePointCrossover"); crossover.setParameter("probability",0.9); mutation = MutationFactory.getMutationOperator("BitFlipMutation"); mutation.setParameter("probability",1.0/80); */ /* Selection Operator */ selection = new BinaryTournament(new FitnessComparator()); // Add the operators to the algorithm algorithm.addOperator("crossover", crossover); algorithm.addOperator("mutation", mutation); algorithm.addOperator("selection", selection); // Execute the Algorithm long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; // Print the results logger_.info("Total execution time: " + estimatedTime + "ms"); logger_.info("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); logger_.info("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); if (indicators != null) { logger_.info("Quality indicators"); logger_.info("Hypervolume: " + indicators.getHypervolume(population)); logger_.info("GD : " + indicators.getGD(population)); logger_.info("IGD : " + indicators.getIGD(population)); logger_.info("Spread : " + indicators.getSpread(population)); logger_.info("Epsilon : " + indicators.getEpsilon(population)); } // if } // main