void createEllipse(ImagePlus imp) { IJ.showStatus("Fitting ellipse"); Roi roi = imp.getRoi(); if (roi == null) { noRoi("Fit Ellipse"); return; } if (roi.isLine()) { IJ.error("Fit Ellipse", "\"Fit Ellipse\" does not work with line selections"); return; } ImageProcessor ip = imp.getProcessor(); ip.setRoi(roi); int options = Measurements.CENTROID + Measurements.ELLIPSE; ImageStatistics stats = ImageStatistics.getStatistics(ip, options, null); double dx = stats.major * Math.cos(stats.angle / 180.0 * Math.PI) / 2.0; double dy = -stats.major * Math.sin(stats.angle / 180.0 * Math.PI) / 2.0; double x1 = stats.xCentroid - dx; double x2 = stats.xCentroid + dx; double y1 = stats.yCentroid - dy; double y2 = stats.yCentroid + dy; double aspectRatio = stats.minor / stats.major; Undo.setup(Undo.ROI, imp); imp.deleteRoi(); Roi roi2 = new EllipseRoi(x1, y1, x2, y2, aspectRatio); transferProperties(roi, roi2); imp.setRoi(roi2); }
public void run(String arg) { imp = WindowManager.getCurrentImage(); if (arg.equals("add")) { addToRoiManager(imp); return; } if (imp == null) { IJ.noImage(); return; } if (arg.equals("all")) imp.setRoi(0, 0, imp.getWidth(), imp.getHeight()); else if (arg.equals("none")) imp.deleteRoi(); else if (arg.equals("restore")) imp.restoreRoi(); else if (arg.equals("spline")) fitSpline(); else if (arg.equals("interpolate")) interpolate(); else if (arg.equals("circle")) fitCircle(imp); else if (arg.equals("ellipse")) createEllipse(imp); else if (arg.equals("hull")) convexHull(imp); else if (arg.equals("mask")) createMask(imp); else if (arg.equals("from")) createSelectionFromMask(imp); else if (arg.equals("inverse")) invert(imp); else if (arg.equals("toarea")) lineToArea(imp); else if (arg.equals("toline")) areaToLine(imp); else if (arg.equals("properties")) { setProperties("Properties ", imp.getRoi()); imp.draw(); } else if (arg.equals("band")) makeBand(imp); else if (arg.equals("tobox")) toBoundingBox(imp); else if (arg.equals("rotate")) rotate(imp); else if (arg.equals("enlarge")) enlarge(imp); }
void scale(ImageProcessor ip) { if (newWindow) { Rectangle r = ip.getRoi(); ImagePlus imp2 = imp.createImagePlus(); imp2.setProcessor(title, ip.resize(newWidth, newHeight, averageWhenDownsizing)); Calibration cal = imp2.getCalibration(); if (cal.scaled()) { cal.pixelWidth *= 1.0 / xscale; cal.pixelHeight *= 1.0 / yscale; } imp2.show(); imp.trimProcessor(); imp2.trimProcessor(); imp2.changes = true; } else { if (processStack && imp.getStackSize() > 1) { Undo.reset(); StackProcessor sp = new StackProcessor(imp.getStack(), ip); sp.scale(xscale, yscale, bgValue); } else { ip.snapshot(); Undo.setup(Undo.FILTER, imp); ip.setSnapshotCopyMode(true); ip.scale(xscale, yscale); ip.setSnapshotCopyMode(false); } imp.deleteRoi(); imp.updateAndDraw(); imp.changes = true; } }
void toBoundingBox(ImagePlus imp) { Roi roi = imp.getRoi(); if (roi == null) { noRoi("To Bounding Box"); return; } Undo.setup(Undo.ROI, imp); Rectangle r = roi.getBounds(); imp.deleteRoi(); Roi roi2 = new Roi(r.x, r.y, r.width, r.height); transferProperties(roi, roi2); imp.setRoi(roi2); }
public void run(String arg) { imp = IJ.getImage(); Roi roi = imp.getRoi(); if (roi != null && !roi.isArea()) imp.deleteRoi(); // ignore any line selection ImageProcessor ip = imp.getProcessor(); if (!showDialog(ip)) return; if (newDepth > 0 && newDepth != oldDepth) { newWindow = true; processStack = true; } if ((ip.getWidth() > 1 && ip.getHeight() > 1) || newWindow) ip.setInterpolationMethod(interpolationMethod); else ip.setInterpolationMethod(ImageProcessor.NONE); ip.setBackgroundValue(bgValue); imp.startTiming(); try { if (newWindow && imp.getStackSize() > 1 && processStack) createNewStack(imp, ip); else scale(ip); } catch (OutOfMemoryError o) { IJ.outOfMemory("Scale"); } IJ.showProgress(1.0); }
/* if selection is closed shape, create a circle with the same area and centroid, otherwise use<br> the Pratt method to fit a circle to the points that define the line or multi-point selection.<br> Reference: Pratt V., Direct least-squares fitting of algebraic surfaces", Computer Graphics, Vol. 21, pages 145-152 (1987).<br> Original code: Nikolai Chernov's MATLAB script for Newton-based Pratt fit.<br> (http://www.math.uab.edu/~chernov/cl/MATLABcircle.html)<br> Java version: https://github.com/mdoube/BoneJ/blob/master/src/org/doube/geometry/FitCircle.java<br> Authors: Nikolai Chernov, Michael Doube, Ved Sharma */ void fitCircle(ImagePlus imp) { Roi roi = imp.getRoi(); if (roi == null) { noRoi("Fit Circle"); return; } if (roi.isArea()) { // create circle with the same area and centroid Undo.setup(Undo.ROI, imp); ImageProcessor ip = imp.getProcessor(); ip.setRoi(roi); ImageStatistics stats = ImageStatistics.getStatistics(ip, Measurements.AREA + Measurements.CENTROID, null); double r = Math.sqrt(stats.pixelCount / Math.PI); imp.deleteRoi(); int d = (int) Math.round(2.0 * r); Roi roi2 = new OvalRoi( (int) Math.round(stats.xCentroid - r), (int) Math.round(stats.yCentroid - r), d, d); transferProperties(roi, roi2); imp.setRoi(roi2); return; } Polygon poly = roi.getPolygon(); int n = poly.npoints; int[] x = poly.xpoints; int[] y = poly.ypoints; if (n < 3) { IJ.error("Fit Circle", "At least 3 points are required to fit a circle."); return; } // calculate point centroid double sumx = 0, sumy = 0; for (int i = 0; i < n; i++) { sumx = sumx + poly.xpoints[i]; sumy = sumy + poly.ypoints[i]; } double meanx = sumx / n; double meany = sumy / n; // calculate moments double[] X = new double[n], Y = new double[n]; double Mxx = 0, Myy = 0, Mxy = 0, Mxz = 0, Myz = 0, Mzz = 0; for (int i = 0; i < n; i++) { X[i] = x[i] - meanx; Y[i] = y[i] - meany; double Zi = X[i] * X[i] + Y[i] * Y[i]; Mxy = Mxy + X[i] * Y[i]; Mxx = Mxx + X[i] * X[i]; Myy = Myy + Y[i] * Y[i]; Mxz = Mxz + X[i] * Zi; Myz = Myz + Y[i] * Zi; Mzz = Mzz + Zi * Zi; } Mxx = Mxx / n; Myy = Myy / n; Mxy = Mxy / n; Mxz = Mxz / n; Myz = Myz / n; Mzz = Mzz / n; // calculate the coefficients of the characteristic polynomial double Mz = Mxx + Myy; double Cov_xy = Mxx * Myy - Mxy * Mxy; double Mxz2 = Mxz * Mxz; double Myz2 = Myz * Myz; double A2 = 4 * Cov_xy - 3 * Mz * Mz - Mzz; double A1 = Mzz * Mz + 4 * Cov_xy * Mz - Mxz2 - Myz2 - Mz * Mz * Mz; double A0 = Mxz2 * Myy + Myz2 * Mxx - Mzz * Cov_xy - 2 * Mxz * Myz * Mxy + Mz * Mz * Cov_xy; double A22 = A2 + A2; double epsilon = 1e-12; double ynew = 1e+20; int IterMax = 20; double xnew = 0; int iterations = 0; // Newton's method starting at x=0 for (int iter = 1; iter <= IterMax; iter++) { iterations = iter; double yold = ynew; ynew = A0 + xnew * (A1 + xnew * (A2 + 4. * xnew * xnew)); if (Math.abs(ynew) > Math.abs(yold)) { if (IJ.debugMode) IJ.log("Fit Circle: wrong direction: |ynew| > |yold|"); xnew = 0; break; } double Dy = A1 + xnew * (A22 + 16 * xnew * xnew); double xold = xnew; xnew = xold - ynew / Dy; if (Math.abs((xnew - xold) / xnew) < epsilon) break; if (iter >= IterMax) { if (IJ.debugMode) IJ.log("Fit Circle: will not converge"); xnew = 0; } if (xnew < 0) { if (IJ.debugMode) IJ.log("Fit Circle: negative root: x = " + xnew); xnew = 0; } } if (IJ.debugMode) IJ.log("Fit Circle: n=" + n + ", xnew=" + IJ.d2s(xnew, 2) + ", iterations=" + iterations); // calculate the circle parameters double DET = xnew * xnew - xnew * Mz + Cov_xy; double CenterX = (Mxz * (Myy - xnew) - Myz * Mxy) / (2 * DET); double CenterY = (Myz * (Mxx - xnew) - Mxz * Mxy) / (2 * DET); double radius = Math.sqrt(CenterX * CenterX + CenterY * CenterY + Mz + 2 * xnew); if (Double.isNaN(radius)) { IJ.error("Fit Circle", "Points are collinear."); return; } CenterX = CenterX + meanx; CenterY = CenterY + meany; Undo.setup(Undo.ROI, imp); imp.deleteRoi(); IJ.makeOval( (int) Math.round(CenterX - radius), (int) Math.round(CenterY - radius), (int) Math.round(2 * radius), (int) Math.round(2 * radius)); }