private List<String> getNames(List<Node> nodes) { List<String> names = new ArrayList<String>(); for (Node node : nodes) { names.add(node.getName()); } return names; }
public static Graph erdosRenyiGraph(int n, int e) { List<Node> nodes = new ArrayList<Node>(); for (int i = 0; i < n; i++) nodes.add(new GraphNode("X" + i)); Graph graph = new EdgeListGraph(nodes); for (int e0 = 0; e0 < e; e0++) { int i1 = RandomUtil.getInstance().nextInt(n); int i2 = RandomUtil.getInstance().nextInt(n); if (i1 == i2) { e0--; continue; } Edge edge = Edges.undirectedEdge(nodes.get(i1), nodes.get(i2)); if (graph.containsEdge(edge)) { e0--; continue; } graph.addEdge(edge); } return graph; }
private Graph structure(Graph mim) { List<Node> latents = new ArrayList<Node>(); for (Node node : mim.getNodes()) { if (node.getNodeType() == NodeType.LATENT) { latents.add(node); } } return mim.subgraph(latents); }
private boolean dConnected(Graph graph, String x, String y, String... z) { Node _x = graph.getNode(x); Node _y = graph.getNode(y); List<Node> _z = new ArrayList<Node>(); for (String name : z) { _z.add(graph.getNode(name)); } return graph.isDConnectedTo(_x, _y, _z); }
public void testAlternativeGraphs() { // UniformGraphGenerator gen = new UniformGraphGenerator(UniformGraphGenerator.ANY_DAG); // gen.setNumNodes(100); // gen.setMaxEdges(200); // gen.setMaxDegree(30); // gen.setMaxInDegree(30); // gen.setMaxOutDegree(30); //// gen.setNumIterations(3000000); // gen.setResamplingDegree(10); // // gen.generate(); // // Graph graph = gen.getDag(); Graph graph = weightedRandomGraph(250, 400); List<Integer> degreeCounts = new ArrayList<Integer>(); Map<Integer, Integer> degreeCount = new HashMap<Integer, Integer>(); for (Node node : graph.getNodes()) { int degree = graph.getNumEdges(node); degreeCounts.add(degree); if (degreeCount.get(degree) == null) { degreeCount.put(degree, 0); } degreeCount.put(degree, degreeCount.get(degree) + 1); } Collections.sort(degreeCounts); System.out.println(degreeCounts); List<Integer> _degrees = new ArrayList<Integer>(degreeCount.keySet()); Collections.sort(_degrees); for (int i : _degrees) { int j = degreeCount.get(i); // System.out.println(i + " " + j); System.out.println(log(i + 1) + " " + log(j)); } System.out.println("\nCPL = " + characteristicPathLength(graph)); Graph erGraph = erdosRenyiGraph(200, 200); System.out.println("\n ER CPL = " + characteristicPathLength(erGraph)); }
public static Graph weightedRandomGraph(int n, int e) { List<Node> nodes = new ArrayList<Node>(); for (int i = 0; i < n; i++) nodes.add(new GraphNode("X" + i)); Graph graph = new EdgeListGraph(nodes); for (int e0 = 0; e0 < e; e0++) { int i1 = weightedRandom(nodes, graph); // int i2 = RandomUtil.getInstance().nextInt(n); int i2 = weightedRandom(nodes, graph); if (!(shortestPath(nodes.get(i1), nodes.get(i2), graph) < 9)) { e0--; continue; } if (i1 == i2) { e0--; continue; } Edge edge = Edges.undirectedEdge(nodes.get(i1), nodes.get(i2)); if (graph.containsEdge(edge)) { e0--; continue; } graph.addEdge(edge); } for (Edge edge : graph.getEdges()) { Node n1 = edge.getNode1(); Node n2 = edge.getNode2(); if (!graph.isAncestorOf(n2, n1)) { graph.removeEdge(edge); graph.addDirectedEdge(n1, n2); } else { graph.removeEdge(edge); graph.addDirectedEdge(n2, n1); } } return graph; }
/** Tests to see if d separation facts are symmetric. */ public void testDSeparation2() { EdgeListGraphSingleConnections graph = new EdgeListGraphSingleConnections( new Dag(GraphUtils.randomGraph(7, 0, 14, 30, 15, 15, true))); List<Node> nodes = graph.getNodes(); int depth = -1; for (int i = 0; i < nodes.size(); i++) { for (int j = i; j < nodes.size(); j++) { Node x = nodes.get(i); Node y = nodes.get(j); List<Node> theRest = new ArrayList<Node>(nodes); // theRest.remove(x); // theRest.remove(y); DepthChoiceGenerator gen = new DepthChoiceGenerator(theRest.size(), depth); int[] choice; while ((choice = gen.next()) != null) { List<Node> z = new LinkedList<Node>(); for (int k = 0; k < choice.length; k++) { z.add(theRest.get(choice[k])); } boolean dConnectedTo = graph.isDConnectedTo(x, y, z); boolean dConnectedTo1 = graph.isDConnectedTo(y, x, z); if (dConnectedTo != dConnectedTo1) { System.out.println(x + " d connected to " + y + " given " + z); System.out.println(graph); System.out.println("dconnectedto = " + dConnectedTo); System.out.println("dconnecteto1 = " + dConnectedTo1); fail(); } } } } }
/** Get all nodes that are connected to Y by an undirected edge and not adjacent to X. */ private static List<Node> getTNeighbors(Node x, Node y, Graph graph) { List<Edge> yEdges = graph.getEdges(y); List<Node> tNeighbors = new ArrayList<Node>(); for (Edge edge : yEdges) { if (!Edges.isUndirectedEdge(edge)) { continue; } Node z = edge.getDistalNode(y); if (graph.isAdjacentTo(z, x)) { continue; } tNeighbors.add(z); } return tNeighbors; }
/** * Find all nodes that are connected to Y by an undirected edge that are adjacent to X (that is, * by undirected or directed edge). */ private static List<Node> getNaYX(Node x, Node y, Graph graph) { List<Edge> yEdges = graph.getEdges(y); List<Node> nayx = new ArrayList<Node>(); for (Edge edge : yEdges) { if (!Edges.isUndirectedEdge(edge)) { continue; } Node z = edge.getDistalNode(y); if (!graph.isAdjacentTo(z, x)) { continue; } nayx.add(z); } return nayx; }
/** Tests to see if d separation facts are symmetric. */ public void testDSeparation() { EdgeListGraphSingleConnections graph = new EdgeListGraphSingleConnections( new Dag(GraphUtils.randomGraph(7, 0, 7, 30, 15, 15, true))); System.out.println(graph); List<Node> nodes = graph.getNodes(); int depth = -1; for (int i = 0; i < nodes.size(); i++) { for (int j = i + 1; j < nodes.size(); j++) { Node x = nodes.get(i); Node y = nodes.get(j); List<Node> theRest = new ArrayList<Node>(nodes); theRest.remove(x); theRest.remove(y); DepthChoiceGenerator gen = new DepthChoiceGenerator(theRest.size(), depth); int[] choice; while ((choice = gen.next()) != null) { List<Node> z = new LinkedList<Node>(); for (int k = 0; k < choice.length; k++) { z.add(theRest.get(choice[k])); } if (graph.isDSeparatedFrom(x, y, z) != graph.isDSeparatedFrom(y, x, z)) { fail( SearchLogUtils.independenceFact(x, y, z) + " should have same d-sep result as " + SearchLogUtils.independenceFact(y, x, z)); } } } } }
public void rtest3() { Node x = new GraphNode("X"); Node y = new GraphNode("Y"); Node z = new GraphNode("Z"); Node w = new GraphNode("W"); List<Node> nodes = new ArrayList<Node>(); nodes.add(x); nodes.add(y); nodes.add(z); nodes.add(w); Graph g = new EdgeListGraph(nodes); g.addDirectedEdge(x, y); g.addDirectedEdge(x, z); g.addDirectedEdge(y, w); g.addDirectedEdge(z, w); Graph maxGraph = null; double maxPValue = -1.0; ICovarianceMatrix maxLatentCov = null; Graph mim = DataGraphUtils.randomMim(g, 8, 0, 0, 0, true); // Graph mim = DataGraphUtils.randomSingleFactorModel(5, 5, 8, 0, 0, 0); Graph mimStructure = structure(mim); SemPm pm = new SemPm(mim); System.out.println("\n\nTrue graph:"); System.out.println(mimStructure); SemImInitializationParams params = new SemImInitializationParams(); params.setCoefRange(0.5, 1.5); SemIm im = new SemIm(pm, params); int N = 1000; DataSet data = im.simulateData(N, false); CovarianceMatrix cov = new CovarianceMatrix(data); for (int i = 0; i < 1; i++) { ICovarianceMatrix _cov = DataUtils.reorderColumns(cov); List<List<Node>> partition; FindOneFactorClusters fofc = new FindOneFactorClusters(_cov, TestType.TETRAD_WISHART, .001); fofc.search(); partition = fofc.getClusters(); System.out.println(partition); List<String> latentVarList = reidentifyVariables(mim, data, partition, 2); Mimbuild2 mimbuild = new Mimbuild2(); mimbuild.setAlpha(0.001); // mimbuild.setMinimumSize(5); // To test knowledge. // Knowledge knowledge = new Knowledge2(); // knowledge.setEdgeForbidden("L.Y", "L.W", true); // knowledge.setEdgeRequired("L.Y", "L.Z", true); // mimbuild.setKnowledge(knowledge); Graph mimbuildStructure = mimbuild.search(partition, latentVarList, _cov); double pValue = mimbuild.getpValue(); System.out.println(mimbuildStructure); System.out.println("P = " + pValue); System.out.println("Latent Cov = " + mimbuild.getLatentsCov()); if (pValue > maxPValue) { maxPValue = pValue; maxGraph = new EdgeListGraph(mimbuildStructure); maxLatentCov = mimbuild.getLatentsCov(); } } System.out.println("\n\nTrue graph:"); System.out.println(mimStructure); System.out.println("\nBest graph:"); System.out.println(maxGraph); System.out.println("P = " + maxPValue); System.out.println("Latent Cov = " + maxLatentCov); System.out.println(); }