/** * Creates the levels higher than the given level * * @param boundablesOfALevel the level to build on * @param level the level of the Boundables, or -1 if the boundables are item boundables (that is, * below level 0) * @return the root, which may be a ParentNode or a LeafNode */ private AbstractNode createHigherLevels(List boundablesOfALevel, int level) { Assert.isTrue(!boundablesOfALevel.isEmpty()); List parentBoundables = createParentBoundables(boundablesOfALevel, level + 1); if (parentBoundables.size() == 1) { return (AbstractNode) parentBoundables.get(0); } return createHigherLevels(parentBoundables, level + 1); }
private static Geometry convertSegStrings(Iterator it) { GeometryFactory fact = new GeometryFactory(); List lines = new ArrayList(); while (it.hasNext()) { SegmentString ss = (SegmentString) it.next(); LineString line = fact.createLineString(ss.getCoordinates()); lines.add(line); } return fact.buildGeometry(lines); }
public void findEdge(List dirEdgeList) { /** * Check all forward DirectedEdges only. This is still general, because each edge has a forward * DirectedEdge. */ for (Iterator i = dirEdgeList.iterator(); i.hasNext(); ) { DirectedEdge de = (DirectedEdge) i.next(); if (!de.isForward()) continue; checkForRightmostCoordinate(de); } /** * If the rightmost point is a node, we need to identify which of the incident edges is * rightmost. */ Assert.isTrue( minIndex != 0 || minCoord.equals(minDe.getCoordinate()), "inconsistency in rightmost processing"); if (minIndex == 0) { findRightmostEdgeAtNode(); } else { findRightmostEdgeAtVertex(); } /** now check that the extreme side is the R side. If not, use the sym instead. */ orientedDe = minDe; int rightmostSide = getRightmostSide(minDe, minIndex); if (rightmostSide == Position.LEFT) { orientedDe = minDe.getSym(); } }
private void query(Object searchBounds, AbstractNode node, ItemVisitor visitor) { List childBoundables = node.getChildBoundables(); for (int i = 0; i < childBoundables.size(); i++) { Boundable childBoundable = (Boundable) childBoundables.get(i); if (!getIntersectsOp().intersects(childBoundable.getBounds(), searchBounds)) { continue; } if (childBoundable instanceof AbstractNode) { query(searchBounds, (AbstractNode) childBoundable, visitor); } else if (childBoundable instanceof ItemBoundable) { visitor.visitItem(((ItemBoundable) childBoundable).getItem()); } else { Assert.shouldNeverReachHere(); } } }
private List itemsTree(AbstractNode node) { List valuesTreeForNode = new ArrayList(); for (Iterator i = node.getChildBoundables().iterator(); i.hasNext(); ) { Boundable childBoundable = (Boundable) i.next(); if (childBoundable instanceof AbstractNode) { List valuesTreeForChild = itemsTree((AbstractNode) childBoundable); // only add if not null (which indicates an item somewhere in this tree if (valuesTreeForChild != null) valuesTreeForNode.add(valuesTreeForChild); } else if (childBoundable instanceof ItemBoundable) { valuesTreeForNode.add(((ItemBoundable) childBoundable).getItem()); } else { Assert.shouldNeverReachHere(); } } if (valuesTreeForNode.size() <= 0) return null; return valuesTreeForNode; }
public Geometry buffer(Geometry g, double distance) { PrecisionModel precisionModel = workingPrecisionModel; if (precisionModel == null) precisionModel = g.getPrecisionModel(); // factory must be the same as the one used by the input geomFact = g.getFactory(); OffsetCurveBuilder curveBuilder = new OffsetCurveBuilder(precisionModel, bufParams); OffsetCurveSetBuilder curveSetBuilder = new OffsetCurveSetBuilder(g, distance, curveBuilder); List bufferSegStrList = curveSetBuilder.getCurves(); // short-circuit test if (bufferSegStrList.size() <= 0) { return createEmptyResultGeometry(); } // BufferDebug.runCount++; // String filename = "run" + BufferDebug.runCount + "_curves"; // System.out.println("saving " + filename); // BufferDebug.saveEdges(bufferEdgeList, filename); // DEBUGGING ONLY // WKTWriter wktWriter = new WKTWriter(); // Debug.println("Rings: " + wktWriter.write(convertSegStrings(bufferSegStrList.iterator()))); // wktWriter.setMaxCoordinatesPerLine(10); // System.out.println(wktWriter.writeFormatted(convertSegStrings(bufferSegStrList.iterator()))); computeNodedEdges(bufferSegStrList, precisionModel); graph = new PlanarGraph(new OverlayNodeFactory()); graph.addEdges(edgeList.getEdges()); List subgraphList = createSubgraphs(graph); PolygonBuilder polyBuilder = new PolygonBuilder(geomFact); buildSubgraphs(subgraphList, polyBuilder); List resultPolyList = polyBuilder.getPolygons(); // just in case... if (resultPolyList.size() <= 0) { return createEmptyResultGeometry(); } Geometry resultGeom = geomFact.buildGeometry(resultPolyList); return resultGeom; }
private List createSubgraphs(PlanarGraph graph) { List subgraphList = new ArrayList(); for (Iterator i = graph.getNodes().iterator(); i.hasNext(); ) { Node node = (Node) i.next(); if (!node.isVisited()) { BufferSubgraph subgraph = new BufferSubgraph(); subgraph.create(node); subgraphList.add(subgraph); } } /** * Sort the subgraphs in descending order of their rightmost coordinate. This ensures that when * the Polygons for the subgraphs are built, subgraphs for shells will have been built before * the subgraphs for any holes they contain. */ Collections.sort(subgraphList, Collections.reverseOrder()); return subgraphList; }
/** * Completes the building of the input subgraphs by depth-labelling them, and adds them to the * PolygonBuilder. The subgraph list must be sorted in rightmost-coordinate order. * * @param subgraphList the subgraphs to build * @param polyBuilder the PolygonBuilder which will build the final polygons */ private void buildSubgraphs(List subgraphList, PolygonBuilder polyBuilder) { List processedGraphs = new ArrayList(); for (Iterator i = subgraphList.iterator(); i.hasNext(); ) { BufferSubgraph subgraph = (BufferSubgraph) i.next(); Coordinate p = subgraph.getRightmostCoordinate(); // int outsideDepth = 0; // if (polyBuilder.containsPoint(p)) // outsideDepth = 1; SubgraphDepthLocater locater = new SubgraphDepthLocater(processedGraphs); int outsideDepth = locater.getDepth(p); // try { subgraph.computeDepth(outsideDepth); // } // catch (RuntimeException ex) { // // debugging only // //subgraph.saveDirEdges(); // throw ex; // } subgraph.findResultEdges(); processedGraphs.add(subgraph); polyBuilder.add(subgraph.getDirectedEdges(), subgraph.getNodes()); } }
/** * Sorts the childBoundables then divides them into groups of size M, where M is the node * capacity. */ protected List createParentBoundables(List childBoundables, int newLevel) { Assert.isTrue(!childBoundables.isEmpty()); ArrayList parentBoundables = new ArrayList(); parentBoundables.add(createNode(newLevel)); ArrayList sortedChildBoundables = new ArrayList(childBoundables); Collections.sort(sortedChildBoundables, getComparator()); for (Iterator i = sortedChildBoundables.iterator(); i.hasNext(); ) { Boundable childBoundable = (Boundable) i.next(); if (lastNode(parentBoundables).getChildBoundables().size() == getNodeCapacity()) { parentBoundables.add(createNode(newLevel)); } lastNode(parentBoundables).addChildBoundable(childBoundable); } return parentBoundables; }
protected AbstractNode lastNode(List nodes) { return (AbstractNode) nodes.get(nodes.size() - 1); }