Exemplo n.º 1
0
 private double[] setNewBeta(final double[] newBeta) {
   final double[] fullBeta;
   if (_activeCols != null) {
     fullBeta = MemoryManager.malloc8d(_dinfo.fullN() + 1);
     int j = 0;
     for (int i : _activeCols) fullBeta[i] = newBeta[j++];
     assert j == newBeta.length - 1;
     fullBeta[fullBeta.length - 1] = newBeta[j];
   } else {
     assert newBeta.length == _dinfo.fullN() + 1;
     fullBeta = newBeta;
   }
   final double[] newBetaDeNorm;
   if (_dinfo._standardize) {
     newBetaDeNorm = fullBeta.clone();
     double norm = 0.0; // Reverse any normalization on the intercept
     // denormalize only the numeric coefs (categoricals are not normalized)
     final int numoff = _dinfo.numStart();
     for (int i = numoff; i < fullBeta.length - 1; i++) {
       double b = newBetaDeNorm[i] * _dinfo._normMul[i - numoff];
       norm += b * _dinfo._normSub[i - numoff]; // Also accumulate the intercept adjustment
       newBetaDeNorm[i] = b;
     }
     newBetaDeNorm[newBetaDeNorm.length - 1] -= norm;
   } else newBetaDeNorm = null;
   _model.setLambdaSubmodel(
       _lambdaIdx,
       newBetaDeNorm == null ? fullBeta : newBetaDeNorm,
       newBetaDeNorm == null ? null : fullBeta,
       (_iter + 1));
   _model.clone().update(self());
   return fullBeta;
 }
Exemplo n.º 2
0
 private void run(final double ymu, final long nobs, LMAXTask lmaxt) {
   String[] warns = null;
   if ((!lambda_search || !strong_rules_enabled) && (_dinfo.fullN() > MAX_PREDICTORS))
     throw new IllegalArgumentException(
         "Too many predictors! GLM can only handle "
             + MAX_PREDICTORS
             + " predictors, got "
             + _dinfo.fullN()
             + ", try to run with strong_rules enabled.");
   if (lambda_search) {
     max_iter = Math.max(300, max_iter);
     assert lmaxt != null : "running lambda search, but don't know what is the lambda max!";
     final double lmax = lmaxt.lmax();
     final double lambda_min_ratio =
         _dinfo._adaptedFrame.numRows() > _dinfo.fullN() ? 0.0001 : 0.01;
     final double d = Math.pow(lambda_min_ratio, 0.01);
     lambda = new double[100];
     lambda[0] = lmax;
     for (int i = 1; i < lambda.length; ++i) lambda[i] = lambda[i - 1] * d;
     _runAllLambdas = false;
   } else if (alpha[0] > 0
       && lmaxt
           != null) { // make sure we start with lambda max (and discard all lambda > lambda max)
     final double lmax = lmaxt.lmax();
     int i = 0;
     while (i < lambda.length && lambda[i] > lmax) ++i;
     if (i != 0) {
       Log.info(
           "GLM: removing "
               + i
               + " lambdas > lambda_max: "
               + Arrays.toString(Arrays.copyOf(lambda, i)));
       warns =
           i == lambda.length
               ? new String[] {
                 "Removed " + i + " lambdas > lambda_max",
                 "No lambdas < lambda_max, returning null model."
               }
               : new String[] {"Removed " + i + " lambdas > lambda_max"};
     }
     lambda =
         i == lambda.length
             ? new double[] {lambda_max}
             : Arrays.copyOfRange(lambda, i, lambda.length);
   }
   _model =
       new GLMModel(
           GLM2.this,
           dest(),
           _dinfo,
           _glm,
           beta_epsilon,
           alpha[0],
           lambda_max,
           lambda,
           ymu,
           prior);
   _model.warnings = warns;
   _model.clone().delete_and_lock(self());
   if (lambda[0] == lambda_max && alpha[0] > 0) { // fill-in trivial solution for lambda max
     _beta = MemoryManager.malloc8d(_dinfo.fullN() + 1);
     _beta[_beta.length - 1] = _glm.link(ymu) + _iceptAdjust;
     _model.setLambdaSubmodel(0, _beta, _beta, 0);
     if (lmaxt != null) _model.setAndTestValidation(0, lmaxt._val);
     _lambdaIdx = 1;
   }
   if (_lambdaIdx == lambda.length) // ran only with one lambda > lambda_max => return null model
   GLM2.this.complete(); // signal we're done to anyone waiting for the job
   else {
     ++_iter;
     if (lmaxt != null && strong_rules_enabled)
       activeCols(lambda[_lambdaIdx], lmaxt.lmax(), lmaxt.gradient(l2pen()));
     Log.info(
         "GLM2 staring GLM after "
             + (System.currentTimeMillis() - start)
             + "ms of preprocessing (mean/lmax/strong rules computation)");
     new GLMIterationTask(
             GLM2.this,
             _activeData,
             _glm,
             true,
             false,
             false,
             null,
             _ymu = ymu,
             _reg = 1.0 / nobs,
             new Iteration())
         .asyncExec(_activeData._adaptedFrame);
   }
 }