Exemplo n.º 1
0
  public void emit() {
    for (int i = 1; i <= emitNum; i++) {
      Particle x = new Particle(loc.x, loc.y, 0, null);
      if (images != null) {
        x.setImage(images[(int) randomP(images.length)]);
      } else {
        x.setImage(null);
      }
      double temp = angle2 - angle1;
      double newAngle = (((rnd.nextDouble() * temp) + angle1) * Math.PI / 180);
      if (randomV) {
        x.setVel(
            randomP(xSpeed) * FastMath.cos(newAngle), randomP(ySpeed) * FastMath.sin(newAngle), 0);
      } else {
        x.setVel(xSpeed * FastMath.cos(newAngle), ySpeed * FastMath.sin(newAngle), 0);
      }

      x.setFade(fade);
      x.setFadeRate(fadeRate);
      x.setLoc(loc.x + random(spreadX), loc.y + random(spreadY), 0);
      x.setAcc(xAcc, yAcc, 0);
      x.setMaxAge(maxAge);
      x.setMaxSize(maxSize);
      x.setSize(size);
      x.setAgeRate(ageRate);
      x.setGrowthRate(growthRate);
      x.setBlink(blink);
      x.setColor(color);
      x.setMaxSpeed(new Vector3D(maxXSpeed, maxYSpeed, 0));
      particleManager.addParticle(x);
    }
  }
Exemplo n.º 2
0
  /**
   * <code>fromAngles</code> builds a Quaternion from the Euler rotation angles (y,r,p). Note that
   * we are applying in order: roll, pitch, yaw but we've ordered them in x, y, and z for
   * convenience. See:
   * http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm
   *
   * @param yaw the Euler yaw of rotation (in radians). (aka Bank, often rot around x)
   * @param roll the Euler roll of rotation (in radians). (aka Heading, often rot around y)
   * @param pitch the Euler pitch of rotation (in radians). (aka Attitude, often rot around z)
   */
  public Quaternion fromAngles(float yaw, float roll, float pitch) {
    float angle;
    float sinRoll, sinPitch, sinYaw, cosRoll, cosPitch, cosYaw;
    angle = pitch * 0.5f;
    sinPitch = FastMath.sin(angle);
    cosPitch = FastMath.cos(angle);
    angle = roll * 0.5f;
    sinRoll = FastMath.sin(angle);
    cosRoll = FastMath.cos(angle);
    angle = yaw * 0.5f;
    sinYaw = FastMath.sin(angle);
    cosYaw = FastMath.cos(angle);

    // variables used to reduce multiplication calls.
    float cosRollXcosPitch = cosRoll * cosPitch;
    float sinRollXsinPitch = sinRoll * sinPitch;
    float cosRollXsinPitch = cosRoll * sinPitch;
    float sinRollXcosPitch = sinRoll * cosPitch;

    w = (cosRollXcosPitch * cosYaw - sinRollXsinPitch * sinYaw);
    x = (cosRollXcosPitch * sinYaw + sinRollXsinPitch * cosYaw);
    y = (sinRollXcosPitch * cosYaw + cosRollXsinPitch * sinYaw);
    z = (cosRollXsinPitch * cosYaw - sinRollXcosPitch * sinYaw);

    normalize();
    return this;
  }
Exemplo n.º 3
0
 /**
  * <code>fromAngleNormalAxis</code> sets this quaternion to the values specified by an angle and a
  * normalized axis of rotation.
  *
  * @param angle the angle to rotate (in radians).
  * @param axis the axis of rotation (already normalized).
  */
 public Quaternion fromAngleNormalAxis(float angle, Vector3f axis) {
   if (axis.x == 0 && axis.y == 0 && axis.z == 0) {
     loadIdentity();
   } else {
     float halfAngle = 0.5f * angle;
     float sin = FastMath.sin(halfAngle);
     w = FastMath.cos(halfAngle);
     x = sin * axis.x;
     y = sin * axis.y;
     z = sin * axis.z;
   }
   return this;
 }