/** * Find transfer candidates for profile routing. TODO replace with an on-street search using the * existing profile router functions. */ public Map<StopCluster, Double> findNearbyStopClusters(StopCluster sc, double radius) { Map<StopCluster, Double> ret = Maps.newHashMap(); Envelope env = new Envelope(new Coordinate(sc.lon, sc.lat)); env.expandBy( SphericalDistanceLibrary.metersToLonDegrees(radius, sc.lat), SphericalDistanceLibrary.metersToDegrees(radius)); for (StopCluster cluster : stopClusterSpatialIndex.query(env)) { // TODO this should account for area-like nature of clusters. Use size of bounding boxes. double distance = distlib.distance(sc.lat, sc.lon, cluster.lat, cluster.lon); if (distance < radius) ret.put(cluster, distance); } return ret; }
@Override public List<GraphPath> getPaths(RoutingRequest options) { final Graph graph = graphService.getGraph(options.getRouterId()); if (options.rctx == null) { options.setRoutingContext(graph); options.rctx.pathParsers = new PathParser[] {new BasicPathParser(), new NoThruTrafficPathParser()}; } if (!options.getModes().isTransit()) { return sptService.getShortestPathTree(options).getPaths(); } // also fall back to A* for short trips double distance = distanceLibrary.distance( options.rctx.origin.getCoordinate(), options.rctx.target.getCoordinate()); if (distance < shortPathCutoff) { log.debug("Falling back to A* for very short path"); return shortPathService.getPaths(options); } RaptorDataService service = graph.getService(RaptorDataService.class); if (service == null) { log.warn("No raptor data. Rebuild with RaptorDataBuilder"); return Collections.emptyList(); } RaptorData data = service.getData(); // we multiply the initial walk distance to account for epsilon dominance. double initialWalk = options.getMaxWalkDistance() * WALK_EPSILON; options.setMaxWalkDistance(initialWalk); // do not even bother with obviously impossible walks double minWalk = options.rctx.origin.getDistanceToNearestTransitStop() + options.rctx.target.getDistanceToNearestTransitStop(); if (options.getMaxWalkDistance() < minWalk) { options.setMaxWalkDistance(minWalk); } RoutingRequest walkOptions = options.clone(); walkOptions.rctx.pathParsers = new PathParser[0]; TraverseModeSet modes = options.getModes().clone(); modes.setTransit(false); walkOptions.setModes(modes); RaptorSearch search = new RaptorSearch(data, options); if (data.maxTransitRegions != null) { Calendar tripDate = Calendar.getInstance(graph.getTimeZone()); tripDate.setTime(new Date(1000L * options.dateTime)); Calendar maxTransitStart = Calendar.getInstance(graph.getTimeZone()); maxTransitStart.set(Calendar.YEAR, data.maxTransitRegions.startYear); maxTransitStart.set(Calendar.MONTH, data.maxTransitRegions.startMonth); maxTransitStart.set(Calendar.DAY_OF_MONTH, data.maxTransitRegions.startDay); int day = 0; while (tripDate.after(maxTransitStart)) { day++; tripDate.add(Calendar.DAY_OF_MONTH, -1); } if (day > data.maxTransitRegions.maxTransit.length || options.isWheelchairAccessible()) { day = -1; } search.maxTimeDayIndex = day; } int rushAheadRound = preliminaryRaptorSearch(data, options, walkOptions, search); long searchBeginTime = System.currentTimeMillis(); double expectedWorstTime = 1.5 * distanceLibrary.distance( options.rctx.origin.getCoordinate(), options.rctx.target.getCoordinate()) / options.getWalkSpeed(); int foundSoFar = 0; double firstWalkDistance = 0; List<RaptorState> targetStates = new ArrayList<RaptorState>(); do { int bestElapsedTime = Integer.MAX_VALUE; RETRY: do { for (int round = 0; round < options.getMaxTransfers() + 2; ++round) { if (!round(data, options, walkOptions, search, round)) break; long elapsed = System.currentTimeMillis() - searchBeginTime; if (elapsed > multiPathTimeout * 1000 && multiPathTimeout > 0 && targetStates.size() > 0) break RETRY; ArrayList<RaptorState> toRemove = new ArrayList<RaptorState>(); for (RaptorState state : search.getTargetStates()) { if (state.nBoardings == 0 && options.getMaxWalkDistance() > initialWalk) { toRemove.add(state); } } if (search.getTargetStates().size() > 0) { if (firstWalkDistance == 0) { firstWalkDistance = options.getMaxWalkDistance(); } for (RaptorState state : toRemove) { search.removeTargetState(state.walkPath); } } if (targetStates.size() >= options.getNumItineraries() && round >= rushAheadRound) { int oldBest = bestElapsedTime; for (RaptorState state : search.getTargetStates()) { final int elapsedTime = (int) Math.abs(state.arrivalTime - options.dateTime); if (elapsedTime < bestElapsedTime) { bestElapsedTime = elapsedTime; } } int improvement = oldBest - bestElapsedTime; if (improvement < 600 && bestElapsedTime < expectedWorstTime) break RETRY; } } if (foundSoFar < search.getTargetStates().size()) { foundSoFar = search.getTargetStates().size(); } else if (foundSoFar > 0) { // we didn't find anything new in this round, and we already have // some paths, so bail out break; } options = options.clone(); walkOptions = walkOptions.clone(); if (search.getTargetStates().size() > 0 && bestElapsedTime < expectedWorstTime) { // we have found some paths so we no longer want to expand the max walk distance break RETRY; } else { options.setMaxWalkDistance(options.getMaxWalkDistance() * 2); walkOptions.setMaxWalkDistance(options.getMaxWalkDistance()); options.setWalkReluctance(options.getWalkReluctance() * 2); walkOptions.setWalkReluctance(options.getWalkReluctance()); } search.reset(options); } while (options.getMaxWalkDistance() < initialWalk * MAX_WALK_MULTIPLE && initialWalk < Double.MAX_VALUE); options = options.clone(); walkOptions = walkOptions.clone(); for (RaptorState state : search.getTargetStates()) { for (AgencyAndId trip : state.getTrips()) { options.bannedTrips.add(trip); } } if (search.getTargetStates().size() == 0) break; // no paths found; searching more won't help options.setMaxWalkDistance(firstWalkDistance); walkOptions.setMaxWalkDistance(firstWalkDistance); targetStates.addAll(search.getTargetStates()); search = new RaptorSearch(data, options); } while (targetStates.size() < options.getNumItineraries()); collectRoutesUsed(data, options, targetStates); if (targetStates.isEmpty()) { log.info("RAPTOR found no paths"); } Collections.sort(targetStates); if (targetStates.size() > options.getNumItineraries()) targetStates = targetStates.subList(0, options.getNumItineraries()); List<GraphPath> paths = new ArrayList<GraphPath>(); for (RaptorState targetState : targetStates) { // reconstruct path ArrayList<RaptorState> states = new ArrayList<RaptorState>(); RaptorState cur = targetState; while (cur != null) { states.add(cur); cur = cur.getParent(); } // states is in reverse order of time State state = getState(targetState.getRequest(), data, states); paths.add(new GraphPath(state, true)); } return paths; }
@Override public List<GraphPath> getPaths(RoutingRequest options) { if (options.rctx == null) { options.setRoutingContext(graphService.getGraph(options.getRouterId())); // move into setRoutingContext ? options.rctx.pathParsers = new PathParser[] {new BasicPathParser(), new NoThruTrafficPathParser()}; } RemainingWeightHeuristic heuristic; if (options.getModes().isTransit()) { LOG.debug("Transit itinerary requested."); // always use the bidirectional heuristic because the others are not precise enough heuristic = new BidirectionalRemainingWeightHeuristic(options.rctx.graph); } else { LOG.debug("Non-transit itinerary requested."); heuristic = new DefaultRemainingWeightHeuristic(); } // the states that will eventually be turned into paths and returned List<State> returnStates = new LinkedList<State>(); BinHeap<State> pq = new BinHeap<State>(); // List<State> boundingStates = new ArrayList<State>(); Vertex originVertex = options.rctx.origin; Vertex targetVertex = options.rctx.target; // increase maxWalk repeatedly in case hard limiting is in use WALK: for (double maxWalk = options.getMaxWalkDistance(); returnStates.isEmpty(); maxWalk *= 2) { if (maxWalk != Double.MAX_VALUE && maxWalk > MAX_WALK) { break; } LOG.debug("try search with max walk {}", maxWalk); // increase maxWalk if settings make trip impossible if (maxWalk < Math.min( distanceLibrary.distance(originVertex.getCoordinate(), targetVertex.getCoordinate()), originVertex.getDistanceToNearestTransitStop() + targetVertex.getDistanceToNearestTransitStop())) continue WALK; options.setMaxWalkDistance(maxWalk); // cap search / heuristic weight final double AVG_TRANSIT_SPEED = 25; // m/sec double cutoff = (distanceLibrary.distance(originVertex.getCoordinate(), targetVertex.getCoordinate()) * 1.5) / AVG_TRANSIT_SPEED; // wait time is irrelevant in the heuristic cutoff += options.getMaxWalkDistance() * options.walkReluctance; options.maxWeight = cutoff; State origin = new State(options); // (used to) initialize heuristic outside loop so table can be reused heuristic.computeInitialWeight(origin, targetVertex); options.maxWeight = cutoff + 30 * 60 * options.waitReluctance; // reinitialize states for each retry HashMap<Vertex, List<State>> states = new HashMap<Vertex, List<State>>(); pq.reset(); pq.insert(origin, 0); long startTime = System.currentTimeMillis(); long endTime = startTime + (int) (_timeouts[0] * 1000); LOG.debug("starttime {} endtime {}", startTime, endTime); QUEUE: while (!pq.empty()) { if (System.currentTimeMillis() > endTime) { LOG.debug("timeout at {} msec", System.currentTimeMillis() - startTime); if (returnStates.isEmpty()) break WALK; // disable walk distance increases else { storeMemory(); break WALK; } } // if (pq.peek_min_key() > options.maxWeight) { // LOG.debug("max weight {} exceeded", options.maxWeight); // break QUEUE; // } State su = pq.extract_min(); // for (State bs : boundingStates) { // if (eDominates(bs, su)) { // continue QUEUE; // } // } Vertex u = su.getVertex(); if (traverseVisitor != null) { traverseVisitor.visitVertex(su); } if (u.equals(targetVertex)) { // boundingStates.add(su); returnStates.add(su); if (!options.getModes().isTransit()) break QUEUE; // options should contain max itineraries if (returnStates.size() >= _maxPaths) break QUEUE; if (returnStates.size() < _timeouts.length) { endTime = startTime + (int) (_timeouts[returnStates.size()] * 1000); LOG.debug( "{} path, set timeout to {}", returnStates.size(), _timeouts[returnStates.size()] * 1000); } continue QUEUE; } for (Edge e : options.isArriveBy() ? u.getIncoming() : u.getOutgoing()) { STATE: for (State new_sv = e.traverse(su); new_sv != null; new_sv = new_sv.getNextResult()) { if (traverseVisitor != null) { traverseVisitor.visitEdge(e, new_sv); } double h = heuristic.computeForwardWeight(new_sv, targetVertex); if (h == Double.MAX_VALUE) continue; // for (State bs : boundingStates) { // if (eDominates(bs, new_sv)) { // continue STATE; // } // } Vertex v = new_sv.getVertex(); List<State> old_states = states.get(v); if (old_states == null) { old_states = new LinkedList<State>(); states.put(v, old_states); } else { for (State old_sv : old_states) { if (eDominates(old_sv, new_sv)) { continue STATE; } } Iterator<State> iter = old_states.iterator(); while (iter.hasNext()) { State old_sv = iter.next(); if (eDominates(new_sv, old_sv)) { iter.remove(); } } } if (traverseVisitor != null) traverseVisitor.visitEnqueue(new_sv); old_states.add(new_sv); pq.insert(new_sv, new_sv.getWeight() + h); } } } } storeMemory(); // Make the states into paths and return them List<GraphPath> paths = new LinkedList<GraphPath>(); for (State s : returnStates) { LOG.debug(s.toStringVerbose()); paths.add(new GraphPath(s, true)); } // sort by arrival time, though paths are already in order of increasing difficulty // Collections.sort(paths, new PathComparator(origin.getOptions().isArriveBy())); return paths; }