public static void main(String[] args) throws JMException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator crossover; // Crossover operator Operator mutation; // Mutation operator Operator selection; // Selection operator // int bits ; // Length of bit string in the OneMax problem HashMap parameters; // Operator parameters int threads = 4; // 0 - use all the available cores IParallelEvaluator parallelEvaluator = new MultithreadedEvaluator(threads); // problem = new Sphere("Real", 10) ; problem = new Griewank("Real", 10); algorithm = new pgGA(problem, parallelEvaluator); // Generational GA /* Algorithm parameters*/ algorithm.setInputParameter("populationSize", 100); algorithm.setInputParameter("maxEvaluations", 2500000); // Mutation and Crossover for Real codification parameters = new HashMap(); parameters.put("probability", 0.9); parameters.put("distributionIndex", 20.0); crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover", parameters); parameters = new HashMap(); parameters.put("probability", 1.0 / problem.getNumberOfVariables()); parameters.put("distributionIndex", 20.0); mutation = MutationFactory.getMutationOperator("PolynomialMutation", parameters); /* Selection Operator */ parameters = null; selection = SelectionFactory.getSelectionOperator("BinaryTournament", parameters); /* Add the operators to the algorithm*/ algorithm.addOperator("crossover", crossover); algorithm.addOperator("mutation", mutation); algorithm.addOperator("selection", selection); /* Execute the Algorithm */ long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; System.out.println("Total execution time: " + estimatedTime); /* Log messages */ System.out.println("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); System.out.println("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); } // main
/** * Configure the MOCell algorithm with default parameter settings * * @return an algorithm object * @throws jmetal.util.JMException */ public Algorithm configure() throws JMException { Algorithm algorithm; Operator crossover; Operator mutation; Operator improvement; // Operator for improvement HashMap parameters; // Operator parameters QualityIndicator indicators; // Creating the problem algorithm = new AbYSS(problem_); // Algorithm parameters algorithm.setInputParameter("populationSize", populationSize_); algorithm.setInputParameter("refSet1Size", refSet1Size_); algorithm.setInputParameter("refSet2Size", refSet2Size_); algorithm.setInputParameter("archiveSize", archiveSize_); algorithm.setInputParameter("maxEvaluations", maxEvaluations_); parameters = new HashMap(); parameters.put("probability", crossoverProbability_); parameters.put("distributionIndex", crossoverDistributionIndex_); crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover", parameters); parameters = new HashMap(); parameters.put("probability", mutationProbability_); parameters.put("distributionIndex", mutationDistributionIndex_); mutation = MutationFactory.getMutationOperator("PolynomialMutation", parameters); parameters = new HashMap(); parameters.put("improvementRounds", 1); parameters.put("problem", problem_); parameters.put("mutation", mutation); improvement = new MutationLocalSearch(parameters); // Adding the operators to the algorithm algorithm.addOperator("crossover", crossover); algorithm.addOperator("improvement", improvement); /* Deleted since jMetal 4.2 // Creating the indicator object if ((paretoFrontFile_!=null) && (!paretoFrontFile_.equals(""))) { indicators = new QualityIndicator(problem_, paretoFrontFile_); algorithm.setInputParameter("indicators", indicators) ; } // if */ return algorithm; } // Constructor
/** * Configure SPEA2 with default parameter settings * * @return an algorithm object * @throws jmetal.util.JMException */ public Algorithm configure() throws JMException { Algorithm algorithm; Operator crossover; // Crossover operator Operator mutation; // Mutation operator Operator selection; // Selection operator QualityIndicator indicators; HashMap parameters; // Operator parameters // Creating the problem algorithm = new SPEA2(problem_); // Algorithm parameters algorithm.setInputParameter("populationSize", populationSize_); algorithm.setInputParameter("archiveSize", archiveSize_); algorithm.setInputParameter("maxEvaluations", maxEvaluations_); // Mutation and Crossover for Real codification parameters = new HashMap(); parameters.put("probability", crossoverProbability_); parameters.put("distributionIndex", crossoverDistributionIndex_); crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover", parameters); parameters = new HashMap(); parameters.put("probability", mutationProbability_); parameters.put("distributionIndex", mutationDistributionIndex_); mutation = MutationFactory.getMutationOperator("PolynomialMutation", parameters); // Selection operator parameters = null; selection = SelectionFactory.getSelectionOperator("BinaryTournament", parameters); // Add the operators to the algorithm algorithm.addOperator("crossover", crossover); algorithm.addOperator("mutation", mutation); algorithm.addOperator("selection", selection); /* Deleted since jMetal 4.2 // Creating the indicator object if ((paretoFrontFile_!=null) && (!paretoFrontFile_.equals(""))) { indicators = new QualityIndicator(problem_, paretoFrontFile_); algorithm.setInputParameter("indicators", indicators) ; } // if */ return algorithm; } // configure
/** * Configure the algorithm with the specified parameter experiments.settings * * @return an algorithm object * @throws jmetal.util.JMException */ public Algorithm configure() throws JMException { Algorithm algorithm; Operator selection; Operator crossover; HashMap parameters; // Operator parameters // Creating the problem Object[] problemParams = {"Real"}; problem_ = (new ProblemFactory()).getProblem(problemName_, problemParams); algorithm = new CellDE(problem_); // Algorithm parameters algorithm.setInputParameter("populationSize", populationSize_); algorithm.setInputParameter("archiveSize", archiveSize_); algorithm.setInputParameter("maxEvaluations", maxEvaluations_); algorithm.setInputParameter("feedBack", archiveFeedback_); // Crossover operator parameters = new HashMap(); parameters.put("CR", CR_); parameters.put("F", F_); crossover = CrossoverFactory.getCrossoverOperator("DifferentialEvolutionCrossover", parameters); // Add the operators to the algorithm parameters = null; selection = SelectionFactory.getSelectionOperator("BinaryTournament", parameters); algorithm.addOperator("crossover", crossover); algorithm.addOperator("selection", selection); return algorithm; } // configure
/** * Configure the MOCell algorithm with default parameter experiments.settings * * @return an algorithm object * @throws jmetal.util.JMException */ public Algorithm configure() throws JMException { Algorithm algorithm; Crossover crossover; Mutation mutation; Operator selection; HashMap parameters; // Operator parameters // Selecting the algorithm: there are six MOCell variants Object[] problemParams = {"Real"}; problem_ = (new ProblemFactory()).getProblem(problemName_, problemParams); // algorithm = new sMOCell1(problem_) ; // algorithm = new sMOCell2(problem_) ; // algorithm = new aMOCell1(problem_) ; // algorithm = new aMOCell2(problem_) ; // algorithm = new aMOCell3(problem_) ; algorithm = new MOCell(problem_); // Algorithm parameters algorithm.setInputParameter("populationSize", populationSize_); algorithm.setInputParameter("maxEvaluations", maxEvaluations_); algorithm.setInputParameter("archiveSize", archiveSize_); algorithm.setInputParameter("feedBack", feedback_); // Mutation and Crossover for Real codification parameters = new HashMap(); parameters.put("probability", crossoverProbability_); parameters.put("distributionIndex", crossoverDistributionIndex_); crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover", parameters); parameters = new HashMap(); parameters.put("probability", mutationProbability_); parameters.put("distributionIndex", mutationDistributionIndex_); mutation = MutationFactory.getMutationOperator("PolynomialMutation", parameters); // Selection Operator parameters = null; selection = SelectionFactory.getSelectionOperator("BinaryTournament", parameters); // Add the operators to the algorithm algorithm.addOperator("crossover", crossover); algorithm.addOperator("mutation", mutation); algorithm.addOperator("selection", selection); return algorithm; } // configure
/** * @param args Command line arguments. The first (optional) argument specifies the problem to * solve. * @throws JMException */ public static void main(String[] args) throws JMException, IOException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator crossover; // Crossover operator Operator mutation; // Mutation operator Operator selection; // Selection operator QualityIndicator indicators; // Object to get quality indicators HashMap parameters; // Operator parameters // Logger object and file to store log messages logger_ = Configuration.logger_; fileHandler_ = new FileHandler("FastPGA_main.log"); logger_.addHandler(fileHandler_); indicators = null; if (args.length == 1) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); } // if else if (args.length == 2) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); indicators = new QualityIndicator(problem, args[1]); } // if else { // Default problem problem = new Kursawe("Real", 3); // problem = new Kursawe("BinaryReal", 3); // problem = new Water("Real"); // problem = new ZDT1("ArrayReal", 100); // problem = new ConstrEx("Real"); // problem = new DTLZ1("Real"); // problem = new OKA2("Real") ; } // else algorithm = new FastPGA(problem); algorithm.setInputParameter("maxPopSize", 100); algorithm.setInputParameter("initialPopulationSize", 100); algorithm.setInputParameter("maxEvaluations", 25000); algorithm.setInputParameter("a", 20.0); algorithm.setInputParameter("b", 1.0); algorithm.setInputParameter("c", 20.0); algorithm.setInputParameter("d", 0.0); // Parameter "termination" // If the preferred stopping criterium is PPR based, termination must // be set to 0; otherwise, if the algorithm is intended to iterate until // a give number of evaluations is carried out, termination must be set to // that number algorithm.setInputParameter("termination", 1); // Mutation and Crossover for Real codification parameters = new HashMap(); parameters.put("probability", 0.9); parameters.put("distributionIndex", 20.0); crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover", parameters); // crossover.setParameter("probability",0.9); // crossover.setParameter("distributionIndex",20.0); parameters = new HashMap(); parameters.put("probability", 1.0 / problem.getNumberOfVariables()); parameters.put("distributionIndex", 20.0); mutation = MutationFactory.getMutationOperator("PolynomialMutation", parameters); // Mutation and Crossover for Binary codification parameters = new HashMap(); parameters.put("comparator", new FPGAFitnessComparator()); selection = new BinaryTournament(parameters); algorithm.addOperator("crossover", crossover); algorithm.addOperator("mutation", mutation); algorithm.addOperator("selection", selection); long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; // Result messages logger_.info("Total execution time: " + estimatedTime + "ms"); logger_.info("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); logger_.info("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); if (indicators != null) { logger_.info("Quality indicators"); logger_.info("Hypervolume: " + indicators.getHypervolume(population)); logger_.info("GD : " + indicators.getGD(population)); logger_.info("IGD : " + indicators.getIGD(population)); logger_.info("Spread : " + indicators.getSpread(population)); logger_.info("Epsilon : " + indicators.getEpsilon(population)); int evaluations = ((Integer) algorithm.getOutputParameter("evaluations")).intValue(); logger_.info("Speed : " + evaluations + " evaluations"); } // if } // main