/** * Sets the input, buoyancy profile. * * @param buoyProfile The input, buoyancy profile. * @throws TypeException if the domain quantity isn't pressure or the range quantity isn't volume * per mass. * @throws VisADException if a VisAD failure occurs. * @throws RemoteException if a Java RMI failure occurs. */ public void setBuoyancyProfile(Field buoyProfile) throws TypeException, VisADException, RemoteException { FunctionType funcType = (FunctionType) buoyProfile.getType(); RealTupleType domainType = funcType.getDomain(); if (!Pressure.getRealType().equalsExceptNameButUnits(domainType)) { throw new TypeException(domainType.toString()); } MathType rangeType = funcType.getRange(); if (!CapeBean.massicVolume.equalsExceptNameButUnits(rangeType)) { throw new TypeException(rangeType.toString()); } this.buoyProfile = buoyProfile; }
/** * Computes the output Level of Free Convection (LFC) from an (AirPressure -> MassicVolume) * buoyancy profile. * * @param datums The input data in the same order as during construction: <code>datums[0] * </code> is the input buoyancy profile. * @return The pressure at the LFC of the buoyancy profile. * @throws ClassCastException if an input data reference has the wrong type of data object. * @throws TypeException if a VisAD data object has the wrong type. * @throws VisADException if a VisAD failure occurs. * @throws RemoteException if a Java RMI failure occurs. * @throws IllegalArgumentException if the profile is not ascending. */ protected Data compute(Data[] datums) throws TypeException, VisADException, RemoteException { Field buoyProfile = (Field) datums[0]; Real lfc = noData; // default return value if (buoyProfile != null) { FunctionType funcType = (FunctionType) buoyProfile.getType(); RealTupleType domainType = funcType.getDomain(); if (!Pressure.getRealType().equalsExceptNameButUnits(domainType)) { throw new TypeException(domainType.toString()); } MathType rangeType = funcType.getRange(); Util.vetType(MassicVolume.getRealType(), buoyProfile); Set domainSet = buoyProfile.getDomainSet(); double[] pressures = domainSet.getDoubles()[0]; float[] buoys = buoyProfile.getFloats()[0]; if (pressures.length > 1) { int lastI = pressures.length - 1; boolean ascending = pressures[0] >= pressures[lastI]; Unit presUnit = domainSet.getSetUnits()[0]; int i; if (ascending) { /* * For a level of free convection to exist, the lower * buoyancy must be negative. */ for (i = 0; (i < buoys.length) && (buoys[i] >= 0); i++) ; /* * To find the level of free convection, ascend to * positive buoyancy. */ while ((++i < buoys.length) && (buoys[i] <= 0)) ; if (i < buoys.length) { lfc = interpolatePres(pressures[i], buoys[i], pressures[i - 1], buoys[i - 1], presUnit); } } else { /* * For a level of free convection to exist, the lower * buoyancy must be negative. */ for (i = lastI; (i >= 0) && (buoys[i] >= 0); i--) ; /* * To find the level of free convection, ascend to * positive buoyancy. */ while ((--i >= 0) && (buoys[i] <= 0)) ; if (i >= 0) { lfc = interpolatePres(pressures[i], buoys[i], pressures[i + 1], buoys[i + 1], presUnit); } } } } return lfc; }