/** * Evaluate an iterative recommender on the folds of a dataset split, display results on STDOUT. * * @param recommender a rating predictor * @param num_folds the number of folds * @param max_iter the maximum number of iterations * @param find_iter the report interval * @throws Exception */ public static void doIterativeCrossValidation( RatingPredictor recommender, int num_folds, int max_iter, Integer find_iter) throws Exception { RatingCrossValidationSplit split = new RatingCrossValidationSplit(recommender.getRatings(), num_folds); doIterativeCrossValidation(recommender, split, max_iter, find_iter); }
/** * Evaluate on the folds of a dataset split. * * @param recommender a rating predictor * @param num_folds the number of folds * @param compute_fit if set to true measure fit on the training data as well * @param show_results if set to true to print results to STDERR * @return a dictionary containing the average results over the different folds of the split * @throws Exception */ public static RatingPredictionEvaluationResults doCrossValidation( RatingPredictor recommender, Integer num_folds, Boolean compute_fit, Boolean show_results) throws Exception { if (num_folds == null) num_folds = 5; if (compute_fit == null) compute_fit = false; if (show_results == null) show_results = false; RatingCrossValidationSplit split = new RatingCrossValidationSplit(recommender.getRatings(), num_folds); return doCrossValidation(recommender, split, compute_fit, show_results); }
/** * Evaluate an iterative recommender on the folds of a dataset split, display results on STDOUT. * * @param recommender a rating predictor * @param split a rating dataset split * @param max_iter the maximum number of iterations * @param find_iter the report interval * @throws Exception */ public static void doIterativeCrossValidation( RatingPredictor recommender, ISplit<IRatings> split, int max_iter, Integer find_iter) throws Exception { if (find_iter == null) find_iter = 1; if (!(recommender instanceof IIterativeModel)) throw new IllegalArgumentException("recommender must be of type IIterativeModel"); RatingPredictor[] split_recommenders = new RatingPredictor[split.numberOfFolds()]; IIterativeModel[] iterative_recommenders = new IIterativeModel[split.numberOfFolds()]; // Initial training and evaluation for (int i = 0; i < split.numberOfFolds(); i++) { try { split_recommenders[i] = recommender.clone(); // to avoid changes : recommender split_recommenders[i].setRatings(split.train().get(i)); split_recommenders[i].train(); iterative_recommenders[i] = (IIterativeModel) split_recommenders[i]; HashMap<String, Double> fold_results = Ratings.evaluate(split_recommenders[i], split.test().get(i)); System.out.println( "fold " + i + " " + fold_results + " iteration " + iterative_recommenders[i].getNumIter()); } catch (Exception e) { System.err.println("===> ERROR: " + e.getMessage()); throw e; } } // Iterative training and evaluation for (int it = iterative_recommenders[0].getNumIter() + 1; it <= max_iter; it++) { for (int i = 0; i < split.numberOfFolds(); i++) { try { iterative_recommenders[i].iterate(); if (it % find_iter == 0) { HashMap<String, Double> fold_results = Ratings.evaluate(split_recommenders[i], split.test().get(i)); System.out.println("fold " + i + " " + fold_results + " iteration " + it); } } catch (Exception e) { System.err.println("===> ERROR: " + e.getMessage()); throw e; } } } }
/** * Evaluate on the folds of a dataset split. * * @param recommender a rating predictor * @param split a rating dataset split * @param compute_fit if set to true measure fit on the training data as well * @param show_results set to true to print results to STDERR * @return a dictionary containing the average results over the different folds of the split * @throws Exception */ public static RatingPredictionEvaluationResults doCrossValidation( RatingPredictor recommender, ISplit<IRatings> split, Boolean compute_fit, Boolean show_results) throws Exception { if (compute_fit == null) compute_fit = false; if (show_results == null) show_results = false; RatingPredictionEvaluationResults avg_results = new RatingPredictionEvaluationResults(); for (int i = 0; i < split.numberOfFolds(); i++) { try { RatingPredictor split_recommender = recommender.clone(); // to avoid changes : recommender split_recommender.setRatings(split.train().get(i)); split_recommender.train(); HashMap<String, Double> fold_results = Ratings.evaluate(split_recommender, split.test().get(i)); if (compute_fit) fold_results.put("fit", new Double(Ratings.computeFit(split_recommender))); for (String key : fold_results.keySet()) if (avg_results.containsKey(key)) avg_results.put(key, avg_results.get(key) + fold_results.get(key)); else avg_results.put(key, fold_results.get(key)); if (show_results) System.out.println("fold " + i + " " + fold_results); } catch (Exception e) { System.err.println("===> ERROR: " + e.getMessage()); throw e; } } for (String key : Ratings.getMeasures()) { avg_results.put(key, avg_results.get(key) / split.numberOfFolds()); } return avg_results; }
static void loadData( String data_dir, String user_attributes_file, String item_attributes_file, String user_relation_file, String item_relation_file, boolean static_data) throws Exception { long start = Calendar.getInstance().getTimeInMillis(); // Read training data if ((recommender instanceof TimeAwareRatingPredictor || chronological_split != null) && file_format != RatingFileFormat.MOVIELENS_1M) { training_data = TimedRatingData.read( Utils.combine(data_dir, training_file), user_mapping, item_mapping, false); } else { if (file_format == RatingFileFormat.DEFAULT) training_data = static_data ? StaticRatingData.read( Utils.combine(data_dir, training_file), user_mapping, item_mapping, rating_type, false) : RatingData.read( Utils.combine(data_dir, training_file), user_mapping, item_mapping, false); else if (file_format == RatingFileFormat.IGNORE_FIRST_LINE) training_data = static_data ? StaticRatingData.read( Utils.combine(data_dir, training_file), user_mapping, item_mapping, rating_type, true) : RatingData.read( Utils.combine(data_dir, training_file), user_mapping, item_mapping, true); else if (file_format == RatingFileFormat.MOVIELENS_1M) training_data = MovieLensRatingData.read( Utils.combine(data_dir, training_file), user_mapping, item_mapping); else if (file_format == RatingFileFormat.KDDCUP_2011) training_data = org.mymedialite.io.kddcup2011.Ratings.read(Utils.combine(data_dir, training_file)); } recommender.setRatings(training_data); // User attributes if (user_attributes_file != null) user_attributes = AttributeData.read( Utils.combine(data_dir, user_attributes_file), user_mapping, attribute_mapping); if (recommender instanceof IUserAttributeAwareRecommender) ((IUserAttributeAwareRecommender) recommender).setUserAttributes(user_attributes); // Item attributes if (item_attributes_file != null) item_attributes = AttributeData.read( Utils.combine(data_dir, item_attributes_file), item_mapping, attribute_mapping); if (recommender instanceof IItemAttributeAwareRecommender) ((IItemAttributeAwareRecommender) recommender).setItemAttributes(item_attributes); // User relation if (recommender instanceof IUserRelationAwareRecommender) { ((IUserRelationAwareRecommender) recommender) .setUserRelation( RelationData.read(Utils.combine(data_dir, user_relation_file), user_mapping)); System.out.println( "relation over " + ((IUserRelationAwareRecommender) recommender).numUsers() + " users"); } // Item relation if (recommender instanceof IItemRelationAwareRecommender) { ((IItemRelationAwareRecommender) recommender) .setItemRelation( RelationData.read(Utils.combine(data_dir, item_relation_file), item_mapping)); System.out.println( "relation over " + ((IItemRelationAwareRecommender) recommender).getNumItems() + " items"); } // Read test data if (test_file != null) { if (recommender instanceof TimeAwareRatingPredictor && file_format != RatingFileFormat.MOVIELENS_1M) test_data = TimedRatingData.read( Utils.combine(data_dir, test_file), user_mapping, item_mapping, false); else if (file_format == RatingFileFormat.MOVIELENS_1M) test_data = MovieLensRatingData.read( Utils.combine(data_dir, test_file), user_mapping, item_mapping); else if (file_format == RatingFileFormat.KDDCUP_2011) test_data = org.mymedialite.io.kddcup2011.Ratings.read(Utils.combine(data_dir, training_file)); else test_data = StaticRatingData.read( Utils.combine(data_dir, test_file), user_mapping, item_mapping, rating_type, file_format == RatingFileFormat.IGNORE_FIRST_LINE); } System.out.println( "Loading time: " + (double) (Calendar.getInstance().getTimeInMillis() - start) / 1000 + " seconds"); System.out.println("Memory: " + Memory.getUsage() + " MB"); }
static void checkParameters() { if (online_eval && !(recommender instanceof IIncrementalRatingPredictor)) usage( "Recommender " + recommender.getClass().getName() + " does not support incremental updates, which are necessary for an online experiment."); if (training_file == null && load_model_file == null) usage("Please provide either --training-file=FILE or --load-model=FILE."); if (cross_validation == 1) usage("--cross-validation=K requires K to be at least 2."); if (show_fold_results && cross_validation == 0) usage("--show-fold-results only works with --cross-validation=K."); if (cross_validation > 1 && test_ratio != 0) usage("--cross-validation=K and --test-ratio=NUM are mutually exclusive."); if (cross_validation > 1 && prediction_file != null) usage("--cross-validation=K and --prediction-file=FILE are mutually exclusive."); if (test_file == null && test_ratio == 0 && cross_validation == 0 && save_model_file == null && chronological_split == null) usage( "Please provide either test-file=FILE, --test-ratio=NUM, --cross-validation=K, --chronological-split=NUM|DATETIME, or --save-model=FILE."); if (recommender instanceof IUserAttributeAwareRecommender && user_attributes_file == null) usage("Recommender expects --user-attributes=FILE."); if (recommender instanceof IItemAttributeAwareRecommender && item_attributes_file == null) usage("Recommender expects --item-attributes=FILE."); if (recommender instanceof IUserRelationAwareRecommender && user_relations_file == null) usage("Recommender expects --user-relations=FILE."); if (recommender instanceof IItemRelationAwareRecommender && user_relations_file == null) usage("Recommender expects --item-relations=FILE."); // handling of --chronological-split if (chronological_split != null) { try { chronological_split_ratio = Double.parseDouble(chronological_split); } catch (NumberFormatException e) { usage( "Unable to parse chronological_split_ratio " + chronological_split_ratio + " as double"); } if (chronological_split_ratio == -1) try { chronological_split_time = dateFormat.parse(chronological_split); } catch (ParseException e) { usage( "Could not interpret argument of --chronological-split as number or date and time: " + chronological_split); } // check for conflicts if (cross_validation > 1) usage( "--cross-validation=K and --chronological-split=NUM|DATETIME are mutually exclusive."); if (test_ratio > 1) usage("--test-ratio=NUM and --chronological-split=NUM|DATETIME are mutually exclusive."); } }
public static void main(String[] args) throws Exception { // Handlers for uncaught exceptions and interrupts Thread.setDefaultUncaughtExceptionHandler(new Handlers()); Runtime.getRuntime() .addShutdownHook( new Thread() { @Override public void run() { displayStats(); } }); // Recommender arguments String method = null; String recommender_options = ""; // Help/version boolean show_help = false; boolean show_version = false; // Arguments for iteration search int max_iter = 100; double epsilon = 0; double rmse_cutoff = Double.MAX_VALUE; double mae_cutoff = Double.MAX_VALUE; // Data arguments String data_dir = ""; // Other arguments boolean search_hp = false; int random_seed = -1; String prediction_line = "{0}\t{1}\t{2}"; for (String arg : args) { int div = arg.indexOf("=") + 1; String name; String value; if (div > 0) { name = arg.substring(0, div); value = arg.substring(div); } else { name = arg; value = null; } // String-valued options if (name.equals("--training-file=")) training_file = value; else if (name.equals("--test-file=")) test_file = value; else if (name.equals("--recommender=")) method = value; else if (name.equals("--recommender-options=")) recommender_options += " " + value; else if (name.equals("--data-dir=")) data_dir = value; else if (name.equals("--user-attributes=")) user_attributes_file = value; else if (name.equals("--item-attributes=")) item_attributes_file = value; else if (name.equals("--user-relations=")) user_relations_file = value; else if (name.equals("--item-relations=")) item_relations_file = value; else if (name.equals("--save-model=")) save_model_file = value; else if (name.equals("--load-model=")) load_model_file = value; else if (name.equals("--prediction-file=")) prediction_file = value; else if (name.equals("--prediction-line=")) prediction_line = value; else if (name.equals("--chronological-split=")) chronological_split = value; // Integer-valued options else if (name.equals("--find-iter=")) find_iter = Integer.parseInt(value); else if (name.equals("--max-iter=")) max_iter = Integer.parseInt(value); else if (name.equals("--random-seed=")) random_seed = Integer.parseInt(value); else if (name.equals("--cross-validation=")) cross_validation = Integer.parseInt(value); // Double-valued options else if (name.equals("--epsilon=")) epsilon = Double.parseDouble(value); else if (name.equals("--rmse-cutoff=")) rmse_cutoff = Double.parseDouble(value); else if (name.equals("--mae-cutoff=")) mae_cutoff = Double.parseDouble(value); else if (name.equals("--test-ratio=")) test_ratio = Double.parseDouble(value); // Enum options else if (name.equals("--rating-type=")) rating_type = RatingType.valueOf(value); else if (name.equals("--file-format=")) file_format = RatingFileFormat.valueOf(value); // Boolean options else if (name.equals("--compute-fit")) compute_fit = true; else if (name.equals("--online-evaluation")) online_eval = true; else if (name.equals("--show-fold-results")) show_fold_results = true; else if (name.equals("--search-hp")) search_hp = true; else if (name.equals("--help")) show_help = true; else if (name.equals("--version")) show_version = true; } // ... some more command line parameter actions ... boolean no_eval = true; if (test_ratio > 0 || test_file != null || chronological_split != null) no_eval = false; if (show_version) showVersion(); if (show_help) usage(0); if (random_seed != -1) org.mymedialite.util.Random.initInstance(random_seed); // Set up recommender if (load_model_file != null) recommender = (RatingPredictor) Model.load(load_model_file); else if (method != null) recommender = Recommender.createRatingPredictor(method); else recommender = Recommender.createRatingPredictor("BiasedMatrixFactorization"); // In case something went wrong ... if (recommender == null && method != null) usage("Unknown rating prediction method: " + method); if (recommender == null && load_model_file != null) usage("Could not load model from file " + load_model_file); checkParameters(); try { recommender = Recommender.configure(recommender, recommender_options, new ErrorHandler()); } catch (IllegalAccessException e) { System.err.println("Unable to instantiate recommender: " + recommender.toString()); System.exit(0); } // ID mapping objects if (file_format == RatingFileFormat.KDDCUP_2011) { user_mapping = new IdentityMapping(); item_mapping = new IdentityMapping(); } // Load all the data loadData( data_dir, user_attributes_file, item_attributes_file, user_relations_file, item_relations_file, !online_eval); System.out.println( "Ratings range: " + recommender.getMinRating() + ", " + recommender.getMaxRating()); if (test_ratio > 0) { RatingsSimpleSplit split = new RatingsSimpleSplit(training_data, test_ratio); // TODO check training_data = split.train().get(0); recommender.setRatings(training_data); // TODO check test_data = split.test().get(0); System.out.println("Test ratio: " + test_ratio); } if (chronological_split != null) { RatingsChronologicalSplit split = chronological_split_ratio != -1 ? new RatingsChronologicalSplit( (ITimedRatings) training_data, chronological_split_ratio) : new RatingsChronologicalSplit( (ITimedRatings) training_data, chronological_split_time); training_data = split.train().get(0); recommender.setRatings(training_data); test_data = split.test().get(0); if (test_ratio != -1) System.out.println("Test ratio (chronological): " + chronological_split_ratio); else System.out.println("Split time:" + chronological_split_time); } System.out.print( Extensions.statistics(training_data, test_data, user_attributes, item_attributes, false)); if (find_iter != 0) { if (!(recommender instanceof IIterativeModel)) usage("Only iterative recommenders (interface IIterativeModel) support --find-iter=N."); System.out.println("Recommender: " + recommender.toString()); if (cross_validation > 1) { RatingsCrossValidation.doIterativeCrossValidation( recommender, cross_validation, max_iter, find_iter); } else { IIterativeModel iterative_recommender = (IIterativeModel) recommender; if (load_model_file == null) recommender.train(); if (compute_fit) System.out.println( "Fit " + Ratings.evaluate(recommender, training_data) + " iteration " + iterative_recommender.getNumIter()); System.out.println( Ratings.evaluate(recommender, test_data) + " iteration " + iterative_recommender.getNumIter()); for (int it = iterative_recommender.getNumIter() + 1; it <= max_iter; it++) { long start = Calendar.getInstance().getTimeInMillis(); iterative_recommender.iterate(); training_time_stats.add( (double) (Calendar.getInstance().getTimeInMillis() - start) / 1000); if (it % find_iter == 0) { if (compute_fit) { start = Calendar.getInstance().getTimeInMillis(); System.out.println( "Fit " + Ratings.evaluate(recommender, training_data) + " iteration " + it); fit_time_stats.add( (double) (Calendar.getInstance().getTimeInMillis() - start) / 1000); } HashMap<String, Double> results = null; start = Calendar.getInstance().getTimeInMillis(); results = Ratings.evaluate(recommender, test_data); eval_time_stats.add((double) (Calendar.getInstance().getTimeInMillis() - start) / 1000); rmse_eval_stats.add(results.get("RMSE")); System.out.println(results + " iteration " + it); Model.save(recommender, save_model_file, it); if (prediction_file != null) org.mymedialite.ratingprediction.Extensions.writePredictions( recommender, test_data, prediction_file + "-it-" + it, user_mapping, item_mapping, prediction_line); if (epsilon > 0.0 && results.get("RMSE") - Collections.min(rmse_eval_stats) > epsilon) { System.out.println(results.get("RMSE") + " >> " + Collections.min(rmse_eval_stats)); System.out.println( "Reached convergence on training/validation data after " + it + " iterations."); break; } if (results.get("RMSE") > rmse_cutoff || results.get("MAE") > mae_cutoff) { System.out.println("Reached cutoff after " + it + " iterations."); break; } } } // for } } else { long start = Calendar.getInstance().getTimeInMillis(); System.out.println("Recommender: " + recommender); if (load_model_file == null) { if (cross_validation > 1) { RatingPredictionEvaluationResults results = RatingsCrossValidation.doCrossValidation( recommender, cross_validation, compute_fit, show_fold_results); System.out.println(results); no_eval = true; } else { if (search_hp) { double result = NelderMead.findMinimum("RMSE", recommender); System.out.println("Estimated quality (on split): " + result); } recommender.train(); System.out.println( "Training time: " + (double) (Calendar.getInstance().getTimeInMillis() - start) / 1000 + " seconds"); } } if (!no_eval) { start = Calendar.getInstance().getTimeInMillis(); if (online_eval) System.out.println(RatingsOnline.evaluateOnline(recommender, test_data)); else System.out.println(Ratings.evaluate(recommender, test_data)); System.out.println( "Testing time: " + (double) (Calendar.getInstance().getTimeInMillis() - start) / 1000 + " seconds"); if (compute_fit) { System.out.print("Fit:"); start = Calendar.getInstance().getTimeInMillis(); System.out.print(Ratings.evaluate(recommender, training_data)); System.out.println( " fit time: " + (double) (Calendar.getInstance().getTimeInMillis() - start) / 1000); } if (prediction_file != null) { System.out.print("Predict:"); start = Calendar.getInstance().getTimeInMillis(); org.mymedialite.ratingprediction.Extensions.writePredictions( recommender, test_data, prediction_file, user_mapping, item_mapping, prediction_line); System.out.println( " prediction time " + (double) (Calendar.getInstance().getTimeInMillis() - start) / 1000); } } // System.out.println(); } Model.save(recommender, save_model_file); // displayStats(); }