@Override public Vector get(Particle particle) { Vector localGuide = (Vector) particle.getLocalGuide(); // personal best (yi) Vector globalGuide = (Vector) particle.getGlobalGuide(); // global best (y^i) Vector.Builder builder = Vector.newBuilder(); for (int i = 0; i < particle.getDimension(); ++i) { // double tmp1 = cognitive.getParameter(); // double tmp2 = social.getParameter(); double sigma = Math.abs(localGuide.doubleValueOf(i) - globalGuide.doubleValueOf(i)); if (sigma == 0) { sigma = 1; } // System.out.println("Sigma: "+sigma); // according to Kennedy double mean = (localGuide.doubleValueOf(i) + globalGuide.doubleValueOf(i)) / 2; // andries proposal: double mean = (tmp1*personalBestPosition.getReal(i) + // tmp2*nBestPosition.getReal(i)) / (tmp1+tmp2); if (Rand.nextDouble() < p) { builder.add( localGuide.doubleValueOf(i) + this.cauchyDistribution.getRandomNumber(mean, sigma)); } else { builder.add( globalGuide.doubleValueOf(i) + this.gaussianDistribution.getRandomNumber(mean, sigma)); } } return builder.build(); }
/** {@inheritDoc} */ @Override public void randomise() { double tmp = Rand.nextDouble() * (getBounds().getUpperBound() - getBounds().getLowerBound()) + getBounds().getLowerBound(); this.value = Double.valueOf(tmp).intValue(); }
@Override public Vector get(Particle particle) { Vector velocity = (Vector) particle.getVelocity(); Vector position = (Vector) particle.getPosition(); PSO algorithm = (PSO) AbstractAlgorithm.get(); int ns = (int) nSize.getParameter(); fj.data.List<Particle> neighbours = algorithm .getTopology() .sort( Ord.ord( VectorBasedFunctions.sortByDistance(particle, new EuclideanDistanceMeasure()))) .take(ns); Vector.Builder builder = Vector.newBuilder(); for (int i = 0; i < particle.getDimension(); ++i) { double informationSum = 0.0; double randomSum = 0; for (Particle currentTarget : neighbours) { Vector currentTargetPosition = (Vector) currentTarget.getBestPosition(); double randomComponent = Rand.nextDouble() * (4.1 / ns); informationSum += randomComponent * currentTargetPosition.doubleValueOf(i); randomSum += randomComponent; } double value = inertiaWeight.getParameter() * (velocity.doubleValueOf(i) + randomSum * ((informationSum / (ns * randomSum) - position.doubleValueOf(i)))); builder.add(value); } return builder.build(); }