/** {@inheritDoc} */ @Override public void randomise() { double tmp = Rand.nextDouble() * (getBounds().getUpperBound() - getBounds().getLowerBound()) + getBounds().getLowerBound(); this.value = Double.valueOf(tmp).intValue(); }
@Override public Vector get(Particle particle) { Vector localGuide = (Vector) particle.getLocalGuide(); // personal best (yi) Vector globalGuide = (Vector) particle.getGlobalGuide(); // global best (y^i) Vector.Builder builder = Vector.newBuilder(); for (int i = 0; i < particle.getDimension(); ++i) { // double tmp1 = cognitive.getParameter(); // double tmp2 = social.getParameter(); double sigma = Math.abs(localGuide.doubleValueOf(i) - globalGuide.doubleValueOf(i)); if (sigma == 0) { sigma = 1; } // System.out.println("Sigma: "+sigma); // according to Kennedy double mean = (localGuide.doubleValueOf(i) + globalGuide.doubleValueOf(i)) / 2; // andries proposal: double mean = (tmp1*personalBestPosition.getReal(i) + // tmp2*nBestPosition.getReal(i)) / (tmp1+tmp2); if (Rand.nextDouble() < p) { builder.add( localGuide.doubleValueOf(i) + this.cauchyDistribution.getRandomNumber(mean, sigma)); } else { builder.add( globalGuide.doubleValueOf(i) + this.gaussianDistribution.getRandomNumber(mean, sigma)); } } return builder.build(); }
@Override public Vector get(Particle particle) { Vector velocity = (Vector) particle.getVelocity(); Vector position = (Vector) particle.getPosition(); PSO algorithm = (PSO) AbstractAlgorithm.get(); int ns = (int) nSize.getParameter(); fj.data.List<Particle> neighbours = algorithm .getTopology() .sort( Ord.ord( VectorBasedFunctions.sortByDistance(particle, new EuclideanDistanceMeasure()))) .take(ns); Vector.Builder builder = Vector.newBuilder(); for (int i = 0; i < particle.getDimension(); ++i) { double informationSum = 0.0; double randomSum = 0; for (Particle currentTarget : neighbours) { Vector currentTargetPosition = (Vector) currentTarget.getBestPosition(); double randomComponent = Rand.nextDouble() * (4.1 / ns); informationSum += randomComponent * currentTargetPosition.doubleValueOf(i); randomSum += randomComponent; } double value = inertiaWeight.getParameter() * (velocity.doubleValueOf(i) + randomSum * ((informationSum / (ns * randomSum) - position.doubleValueOf(i)))); builder.add(value); } return builder.build(); }
/** * After every {@link #interval} iteration, pick {@link #numberOfSentries a number of} random * entities from the given {@link Algorithm algorithm's} topology and compare their previous * fitness values with their current fitness values. An environment change is detected when the * difference between the previous and current fitness values are >= the specified {@link * #epsilon} value. * * @param algorithm used to get hold of topology of entities and number of iterations * @return true if a change has been detected, false otherwise */ @Override public <A extends HasTopology & Algorithm & HasNeighbourhood> boolean detect(A algorithm) { if ((AbstractAlgorithm.get().getIterations() % interval == 0) && (AbstractAlgorithm.get().getIterations() != 0)) { List all = Java.List_ArrayList().f(algorithm.getTopology()); for (int i = 0; i < numberOfSentries.getParameter(); i++) { // select random sentry entity int random = Rand.nextInt(all.size()); StandardParticle sentry = (StandardParticle) all.get(random); // check for change // double previousFitness = sentry.getFitness().getValue(); boolean detectedChange = false; if (sentry.getFitness().getClass().getName().matches("MinimisationFitness")) { Fitness previousFitness = sentry.getFitness(); sentry.calculateFitness(); Fitness currentFitness = sentry.getFitness(); if (Math.abs(previousFitness.getValue() - currentFitness.getValue()) >= epsilon) { detectedChange = true; } } else if (sentry.getFitness().getClass().getName().matches("StandardMOFitness")) { MOFitness previousFitness = (MOFitness) sentry.getFitness(); sentry.calculateFitness(); MOFitness currentFitness = (MOFitness) sentry.getFitness(); for (int k = 0; k < previousFitness.getDimension(); k++) if (Math.abs( previousFitness.getFitness(k).getValue() - currentFitness.getFitness(k).getValue()) >= epsilon) { detectedChange = true; break; } } if (detectedChange) { System.out.println("Detected a change"); return true; } // remove the selected element from the all list preventing it from being selected again all.remove(random); } } return false; }
/** {@inheritDoc} */ @Override public int compare(E o1, E o2) { SinglePopulationBasedAlgorithm populationBasedAlgorithm = (SinglePopulationBasedAlgorithm) AbstractAlgorithm.getAlgorithmList().index(0); MOOptimisationProblem problem = ((MOOptimisationProblem) populationBasedAlgorithm.getOptimisationProblem()); Particle p1 = (Particle) o1; Particle p2 = (Particle) o2; MOFitness fitness1 = ((MOFitness) problem.getFitness(p1.getBestPosition())); MOFitness fitness2 = ((MOFitness) problem.getFitness(p2.getBestPosition())); int value = fitness1.compareTo(fitness2); if (fitness1.compareTo(fitness2) == 0) { int random = Rand.nextInt(20); if (random > 10) value *= -1; } return value; }
/** Test of reinitialiseContext method, of class CooperativeDataClusteringPSOIterationStrategy. */ @Test public void testReinitialiseContext() { Rand.setSeed(0); DataClusteringPSO instance = new DataClusteringPSO(); SlidingWindow window = new SlidingWindow(); window.setSourceURL("library/src/test/resources/datasets/iris2.arff"); QuantisationErrorMinimisationProblem problem = new QuantisationErrorMinimisationProblem(); problem.setWindow(window); problem.setDomain("R(-5.12:5.12)"); IterationStrategy strategy = new StandardDataClusteringIterationStrategy(); CentroidBoundaryConstraint constraint = new CentroidBoundaryConstraint(); constraint.setDelegate(new RandomBoundaryConstraint()); strategy.setBoundaryConstraint(constraint); instance.setOptimisationProblem(problem); DataDependantPopulationInitialisationStrategy init = new DataDependantPopulationInitialisationStrategy(); init.setEntityType(new ClusterParticle()); init.setEntityNumber(2); instance.setInitialisationStrategy(init); instance.setOptimisationProblem(problem); instance.addStoppingCondition(new MeasuredStoppingCondition()); CooperativePSO cooperative = new CooperativePSO(); cooperative.addStoppingCondition( new MeasuredStoppingCondition(new Iterations(), new Maximum(), 30)); cooperative.addPopulationBasedAlgorithm(instance); cooperative.setOptimisationProblem(problem); cooperative.performInitialisation(); ClusterParticle particleBefore = instance.getTopology().head().getClone(); cooperative.run(); ClusterParticle particleAfter = instance.getTopology().head().getClone(); Assert.assertFalse(particleAfter.getPosition().containsAll(particleBefore.getPosition())); }