@Override protected void doWork(String inputSource, VcfIterator r, VariantContextWriter w) throws IOException { VCFHeader header = r.getHeader(); VCFHeader h2 = new VCFHeader(header.getMetaDataInInputOrder(), header.getSampleNamesInOrder()); h2.addMetaDataLine( new VCFInfoHeaderLine( TAG, VCFHeaderLineCount.UNBOUNDED, VCFHeaderLineType.String, "metadata added from " + TABIX + " . Format was " + FORMAT)); h2.addMetaDataLine( new VCFHeaderLine( getClass().getSimpleName() + "CmdLine", String.valueOf(getProgramCommandLine()))); h2.addMetaDataLine( new VCFHeaderLine(getClass().getSimpleName() + "Version", String.valueOf(getVersion()))); h2.addMetaDataLine( new VCFHeaderLine( getClass().getSimpleName() + "HtsJdkVersion", HtsjdkVersion.getVersion())); h2.addMetaDataLine( new VCFHeaderLine(getClass().getSimpleName() + "HtsJdkHome", HtsjdkVersion.getHome())); SAMSequenceDictionaryProgress progress = new SAMSequenceDictionaryProgress(header); w.writeHeader(h2); while (r.hasNext()) { VariantContext ctx = progress.watch(r.next()); Set<String> annotations = new HashSet<String>(); CloseableIterator<BedLine> iter = this.bedReader.iterator(ctx.getContig(), ctx.getStart() - 1, ctx.getEnd() + 1); while (iter.hasNext()) { BedLine bedLine = iter.next(); if (!ctx.getContig().equals(bedLine.getContig())) continue; if (ctx.getStart() - 1 >= bedLine.getEnd()) continue; if (ctx.getEnd() - 1 < bedLine.getStart()) continue; String newannot = this.parsedFormat.toString(bedLine); if (!newannot.isEmpty()) annotations.add(VCFUtils.escapeInfoField(newannot)); } CloserUtil.close(iter); if (annotations.isEmpty()) { w.add(ctx); continue; } VariantContextBuilder vcb = new VariantContextBuilder(ctx); vcb.attribute(TAG, annotations.toArray()); w.add(vcb.make()); incrVariantCount(); if (checkOutputError()) break; } progress.finish(); }
@Override public void accumulate(final VariantContext ctx) { logger.record(ctx.getContig(), ctx.getStart()); final String variantChrom = ctx.getContig(); final int variantPos = ctx.getStart(); // Skip anything a little too funky if (ctx.isFiltered()) return; if (!ctx.isVariant()) return; if (SKIP_CHROMS.contains(variantChrom)) return; for (final MendelianViolationMetrics trio : trios) { final Genotype momGt = ctx.getGenotype(trio.MOTHER); final Genotype dadGt = ctx.getGenotype(trio.FATHER); final Genotype kidGt = ctx.getGenotype(trio.OFFSPRING); // if any genotype: // - has a non-snp allele; or // - lacks a reference allele // // then ignore this trio if (CollectionUtil.makeList(momGt, dadGt, kidGt) .stream() .anyMatch( gt -> gt.isHetNonRef() || Stream.concat(Stream.of(ctx.getReference()), gt.getAlleles().stream()) .anyMatch(a -> a.length() != 1 || a.isSymbolic()))) { continue; } // if between the trio there are more than 2 alleles including the reference, continue if (Stream.concat( Collections.singleton(ctx.getReference()).stream(), CollectionUtil.makeList(momGt, dadGt, kidGt) .stream() .flatMap(gt -> gt.getAlleles().stream())) .collect(Collectors.toSet()) .size() > 2) continue; // Test to make sure: // 1) That the site is in fact variant in the trio // 2) that the offspring doesn't have a really wacky het allele balance if (!isVariant(momGt, dadGt, kidGt)) continue; if (kidGt.isHet()) { final int[] ad = kidGt.getAD(); if (ad == null) continue; final List<Integer> adOfAlleles = kidGt .getAlleles() .stream() .map(a -> ad[ctx.getAlleleIndex(a)]) .collect(Collectors.toList()); final double minAlleleFraction = Math.min(adOfAlleles.get(0), adOfAlleles.get(1)) / (double) (adOfAlleles.get(0) + adOfAlleles.get(1)); if (minAlleleFraction < MIN_HET_FRACTION) continue; } /////////////////////////////////////////////////////////////// // Determine whether the offspring should be haploid at this // locus and which is the parental donor of the haploid genotype /////////////////////////////////////////////////////////////// boolean haploid = false; Genotype haploidParentalGenotype = null; if (FEMALE_CHROMS.contains(variantChrom) && trio.OFFSPRING_SEX != Sex.Unknown) { if (trio.OFFSPRING_SEX == Sex.Female) { // famale haploid = false; } else if (isInPseudoAutosomalRegion(variantChrom, variantPos)) { // male but in PAR on X, so diploid haploid = false; } else { // male, out of PAR on X, haploid haploid = true; haploidParentalGenotype = momGt; } } // the PAR on the male chromosome should be masked so that reads // align to the female chromosomes instead, so there's no point // of worrying about that here. if (MALE_CHROMS.contains(variantChrom)) { if (trio.OFFSPRING_SEX == Sex.Male) { haploid = true; haploidParentalGenotype = dadGt; } else { continue; } } // We only want to look at sites where we have high enough confidence that the genotypes we // are looking at are // interesting. We want to ensure that parents are always GQ>=MIN_GQ, and that the kid is // either GQ>=MIN_GQ or in the // case where kid is het that the phred-scaled-likelihood of being reference is >=MIN_GQ. if (haploid && (haploidParentalGenotype.isNoCall() || haploidParentalGenotype.getGQ() < MIN_GQ)) continue; if (!haploid && (momGt.isNoCall() || momGt.getGQ() < MIN_GQ || dadGt.isNoCall() || dadGt.getGQ() < MIN_GQ)) continue; if (kidGt.isNoCall()) continue; if (momGt.isHomRef() && dadGt.isHomRef() && !kidGt.isHomRef()) { if (kidGt.getPL()[0] < MIN_GQ) continue; } else if (kidGt.getGQ() < MIN_GQ) continue; // Also filter on the DP for each of the samples - it's possible to miss hets when DP is too // low if (haploid && (kidGt.getDP() < MIN_DP || haploidParentalGenotype.getDP() < MIN_DP)) continue; if (!haploid && (kidGt.getDP() < MIN_DP || momGt.getDP() < MIN_DP || dadGt.getDP() < MIN_DP)) continue; trio.NUM_VARIANT_SITES++; /////////////////////////////////////////////////////////////// // First test for haploid violations /////////////////////////////////////////////////////////////// MendelianViolation type = null; if (haploid) { if (kidGt.isHet()) continue; // Should not see heterozygous calls at haploid regions if (!haploidParentalGenotype.getAlleles().contains(kidGt.getAllele(0))) { if (kidGt.isHomRef()) { type = MendelianViolation.Haploid_Other; trio.NUM_HAPLOID_OTHER++; } else { type = MendelianViolation.Haploid_Denovo; trio.NUM_HAPLOID_DENOVO++; } } } /////////////////////////////////////////////////////////////// // Then test for diploid mendelian violations /////////////////////////////////////////////////////////////// else if (isMendelianViolation(momGt, dadGt, kidGt)) { if (momGt.isHomRef() && dadGt.isHomRef() && !kidGt.isHomRef()) { trio.NUM_DIPLOID_DENOVO++; type = MendelianViolation.Diploid_Denovo; } else if (momGt.isHomVar() && dadGt.isHomVar() && kidGt.isHet()) { trio.NUM_HOMVAR_HOMVAR_HET++; type = MendelianViolation.HomVar_HomVar_Het; } else if (kidGt.isHom() && ((momGt.isHomRef() && dadGt.isHomVar()) || (momGt.isHomVar() && dadGt.isHomRef()))) { trio.NUM_HOMREF_HOMVAR_HOM++; type = MendelianViolation.HomRef_HomVar_Hom; } else if (kidGt.isHom() && ((momGt.isHom() && dadGt.isHet()) || (momGt.isHet() && dadGt.isHom()))) { trio.NUM_HOM_HET_HOM++; type = MendelianViolation.Hom_Het_Hom; } else { trio.NUM_OTHER++; type = MendelianViolation.Other; } } // Output a record into the family's violation VCF if (type != null) { // Create a new Context subsetted to the three samples final VariantContextBuilder builder = new VariantContextBuilder(ctx); builder.genotypes( ctx.getGenotypes() .subsetToSamples(CollectionUtil.makeSet(trio.MOTHER, trio.FATHER, trio.OFFSPRING))); builder.attribute(MENDELIAN_VIOLATION_KEY, type.name()); // Copy over some useful attributes from the full context if (ctx.hasAttribute(VCFConstants.ALLELE_COUNT_KEY)) builder.attribute(ORIGINAL_AC, ctx.getAttribute(VCFConstants.ALLELE_COUNT_KEY)); if (ctx.hasAttribute(VCFConstants.ALLELE_FREQUENCY_KEY)) builder.attribute(ORIGINAL_AF, ctx.getAttribute(VCFConstants.ALLELE_FREQUENCY_KEY)); if (ctx.hasAttribute(VCFConstants.ALLELE_NUMBER_KEY)) builder.attribute(ORIGINAL_AN, ctx.getAttribute(VCFConstants.ALLELE_NUMBER_KEY)); // Write out the variant record familyToViolations.get(trio.FAMILY_ID).add(builder.make()); } } }
@Override protected Object doWork() { IOUtil.assertFileIsReadable(INPUT); IOUtil.assertFileIsReadable(REFERENCE_SEQUENCE); IOUtil.assertFileIsReadable(CHAIN); IOUtil.assertFileIsWritable(OUTPUT); IOUtil.assertFileIsWritable(REJECT); //////////////////////////////////////////////////////////////////////// // Setup the inputs //////////////////////////////////////////////////////////////////////// final LiftOver liftOver = new LiftOver(CHAIN); final VCFFileReader in = new VCFFileReader(INPUT, false); logger.info("Loading up the target reference genome."); final ReferenceSequenceFileWalker walker = new ReferenceSequenceFileWalker(REFERENCE_SEQUENCE); final Map<String, byte[]> refSeqs = new HashMap<>(); for (final SAMSequenceRecord rec : walker.getSequenceDictionary().getSequences()) { refSeqs.put(rec.getSequenceName(), walker.get(rec.getSequenceIndex()).getBases()); } CloserUtil.close(walker); //////////////////////////////////////////////////////////////////////// // Setup the outputs //////////////////////////////////////////////////////////////////////// final VCFHeader inHeader = in.getFileHeader(); final VCFHeader outHeader = new VCFHeader(inHeader); outHeader.setSequenceDictionary(walker.getSequenceDictionary()); final VariantContextWriter out = new VariantContextWriterBuilder() .setOption(Options.INDEX_ON_THE_FLY) .setOutputFile(OUTPUT) .setReferenceDictionary(walker.getSequenceDictionary()) .build(); out.writeHeader(outHeader); final VariantContextWriter rejects = new VariantContextWriterBuilder() .setOutputFile(REJECT) .unsetOption(Options.INDEX_ON_THE_FLY) .build(); final VCFHeader rejectHeader = new VCFHeader(in.getFileHeader()); for (final VCFFilterHeaderLine line : FILTERS) rejectHeader.addMetaDataLine(line); rejects.writeHeader(rejectHeader); //////////////////////////////////////////////////////////////////////// // Read the input VCF, lift the records over and write to the sorting // collection. //////////////////////////////////////////////////////////////////////// long failedLiftover = 0, failedAlleleCheck = 0, total = 0; logger.info("Lifting variants over and sorting."); final SortingCollection<VariantContext> sorter = SortingCollection.newInstance( VariantContext.class, new VCFRecordCodec(outHeader), outHeader.getVCFRecordComparator(), MAX_RECORDS_IN_RAM, TMP_DIR); ProgressLogger progress = new ProgressLogger(logger, 1000000, "read"); for (final VariantContext ctx : in) { ++total; final Interval source = new Interval( ctx.getContig(), ctx.getStart(), ctx.getEnd(), false, ctx.getContig() + ":" + ctx.getStart() + "-" + ctx.getEnd()); final Interval target = liftOver.liftOver(source, 1.0); if (target == null) { rejects.add(new VariantContextBuilder(ctx).filter(FILTER_CANNOT_LIFTOVER).make()); failedLiftover++; } else { // Fix the alleles if we went from positive to negative strand final List<Allele> alleles = new ArrayList<>(); for (final Allele oldAllele : ctx.getAlleles()) { if (target.isPositiveStrand() || oldAllele.isSymbolic()) { alleles.add(oldAllele); } else { alleles.add( Allele.create( SequenceUtil.reverseComplement(oldAllele.getBaseString()), oldAllele.isReference())); } } // Build the new variant context final VariantContextBuilder builder = new VariantContextBuilder( ctx.getSource(), target.getContig(), target.getStart(), target.getEnd(), alleles); builder.id(ctx.getID()); builder.attributes(ctx.getAttributes()); builder.genotypes(ctx.getGenotypes()); builder.filters(ctx.getFilters()); builder.log10PError(ctx.getLog10PError()); // Check that the reference allele still agrees with the reference sequence boolean mismatchesReference = false; for (final Allele allele : builder.getAlleles()) { if (allele.isReference()) { final byte[] ref = refSeqs.get(target.getContig()); final String refString = StringUtil.bytesToString(ref, target.getStart() - 1, target.length()); if (!refString.equalsIgnoreCase(allele.getBaseString())) { mismatchesReference = true; } break; } } if (mismatchesReference) { rejects.add(new VariantContextBuilder(ctx).filter(FILTER_MISMATCHING_REF_ALLELE).make()); failedAlleleCheck++; } else { sorter.add(builder.make()); } } progress.record(ctx.getContig(), ctx.getStart()); } final NumberFormat pfmt = new DecimalFormat("0.0000%"); final String pct = pfmt.format((failedLiftover + failedAlleleCheck) / (double) total); logger.info("Processed ", total, " variants."); logger.info(Long.toString(failedLiftover), " variants failed to liftover."); logger.info( Long.toString(failedAlleleCheck), " variants lifted over but had mismatching reference alleles after lift over."); logger.info(pct, " of variants were not successfully lifted over and written to the output."); rejects.close(); in.close(); //////////////////////////////////////////////////////////////////////// // Write the sorted outputs to the final output file //////////////////////////////////////////////////////////////////////// sorter.doneAdding(); progress = new ProgressLogger(logger, 1000000, "written"); logger.info("Writing out sorted records to final VCF."); for (final VariantContext ctx : sorter) { out.add(ctx); progress.record(ctx.getContig(), ctx.getStart()); } out.close(); sorter.cleanup(); return null; }
@Override public void runCommand() { logger.info("MergeVCFColumnsCommand"); /* * Assumptions * (1) Only two vcfs that are sorted with the same contig order * (2) if contigs on it same order, then we will just skip that contig * (3) No overlapping samples allowed * * Output: * A vcf where intersecting sites are merged together and will only return biallelic markers * the info field will be cleared * the only GT FORMAT field will be there */ Collection<File> vcfs = applicationOptions.getVcfs(); String outfile = applicationOptions.getOutFile(); if (vcfs.size() != 2) { throw new IllegalArgumentException("This function requires exactly two vcfs"); } Iterator<File> vcfFileIter = vcfs.iterator(); File vcf1 = vcfFileIter.next(); File vcf2 = vcfFileIter.next(); VCFFileReader reader1 = new VCFFileReader(vcf1, false); VCFFileReader reader2 = new VCFFileReader(vcf2, false); Iterator<VariantContext> iter1 = reader1.iterator(); Iterator<VariantContext> iter2 = reader2.iterator(); VariantContextComparator comparator = new VariantContextComparator(); /* * Merge headers */ VCFHeader header1 = reader1.getFileHeader(); VCFHeader header2 = reader2.getFileHeader(); List<String> samples1 = header1.getGenotypeSamples(); List<String> samples2 = header2.getGenotypeSamples(); List<String> mergedSamples = new ArrayList<>(samples1.size() + samples2.size()); mergedSamples.addAll(samples1); mergedSamples.addAll(samples2); // Validate that there are no duplicates HashSet<String> sampleSet = new HashSet<String>(); for (String id : mergedSamples) { if (sampleSet.contains(id)) { throw new IllegalArgumentException("Duplicate id found: " + id); } else { sampleSet.add(id); } } HashSet<VCFHeaderLine> meta = new HashSet<>(); meta.add(new VCFFormatHeaderLine("GT", 1, VCFHeaderLineType.String, "GT")); meta.addAll(header1.getContigLines()); VCFHeader mergedHeader = new VCFHeader(meta, mergedSamples); /* * Create encoder */ VCFEncoder encoder = new VCFEncoder(mergedHeader, false, false); BufferedWriter writer = null; try { if (outfile.endsWith(".gz")) { BlockCompressedOutputStream outstream = new BlockCompressedOutputStream(new File(outfile)); writer = new BufferedWriter(new OutputStreamWriter(outstream)); } else { writer = Files.newBufferedWriter( Paths.get(outfile), Charset.defaultCharset(), StandardOpenOption.CREATE, StandardOpenOption.TRUNCATE_EXISTING); } /* * Write header */ VCFHeaderWriter.writeHeader(writer, mergedHeader); logger.info("Wrote header"); VariantContext previous1 = null; VariantContext previous2 = null; int count = 0; int countFile1 = 0; int countFile2 = 0; boolean usePrevious1 = false; boolean usePrevious2 = false; while (iter1.hasNext() || iter2.hasNext()) { if ((iter1.hasNext() || usePrevious1) && (iter2.hasNext() || usePrevious2)) { VariantContext variant1 = null; VariantContext variant2 = null; // if(usePrevious1 == true && usePrevious2 == true && // comparator.compare(previous1,previous2) != 0) { // //then skip both // usePrevious1 = false; // usePrevious2 = false; // } if (usePrevious1) { variant1 = previous1; } else { variant1 = iter1.next(); countFile1++; } if (usePrevious2) { variant2 = previous2; } else { variant2 = iter2.next(); countFile2++; } // check that variants are ordered correctly if (previous1 != null && previous1 != variant1 && comparator.compare(previous1, variant1) > 0) { throw new IllegalStateException( previous1.getContig() + ":" + previous1.getStart() + " > " + variant1.getContig() + ":" + variant1.getStart()); } if (previous2 != null && previous2 != variant2 && comparator.compare(previous2, variant2) > 0) { throw new IllegalStateException( previous2.getContig() + ":" + previous2.getStart() + " > " + variant2.getContig() + ":" + variant2.getStart()); } int cmp = comparator.compare(variant1, variant2); if (cmp < 0) { // logger.info("Skipping VCF1: " + variant1.getContig() + ":" + variant1.getStart() + // "\t" + variant1.getReference().toString() + "\t" + variant1.getAlternateAlleles()); if (usePrevious1 == true && usePrevious2 == true) { // variant1 < variant2 // we need to go to next variant in vcf1 usePrevious1 = false; } usePrevious2 = true; } else if (cmp > 0) { if (usePrevious1 == true && usePrevious2 == true) { // variant1 > variant2 // we need to go to next variant in vcf2 usePrevious2 = false; } usePrevious1 = true; // logger.info("Skipping VCF2: " + variant2.getContig() + ":" + variant2.getStart() + // "\t" + variant2.getReference().toString() + "\t" + variant2.getAlternateAlleles()); } else { // they equal position usePrevious1 = false; usePrevious2 = false; if (variant1.isBiallelic() && variant2.isBiallelic() && variant1.getReference().equals(variant2.getReference()) && variant1.getAlternateAllele(0).equals(variant2.getAlternateAllele(0))) { // TODO: Finish merging // both variants are bialleleic and the reference and alternative alleles match count++; if (count % 10000 == 0) { logger.info(count + " mergeable variants found"); } VariantContext merged = VariantContextMerger.merge(variant1, variant2); writer.write(encoder.encode(merged)); writer.write("\n"); } else { // skip if they do not equal // logger.info("Skipping: " + variant1.getContig() + ":" + variant1.getStart() + // "\t" + variant1.getReference().toString() + "\t" + // variant1.getAlternateAlleles()); // logger.info("Skipping: " + variant2.getContig() + ":" + variant2.getStart() + // "\t" + variant2.getReference().toString() + "\t" + // variant2.getAlternateAlleles()); } } previous1 = variant1; previous2 = variant2; } else if (iter1.hasNext()) { // just skip remaining variants VariantContext current = iter1.next(); countFile1++; if (previous1 != null && current != null && comparator.compare(previous1, current) > 0) { throw new IllegalStateException( previous1.getContig() + ":" + previous1.getStart() + " > " + current.getContig() + ":" + current.getStart()); } previous1 = current; // logger.info("Skipping: " + previous1.getContig() + ":" + previous1.getStart() + "\t" + // previous1.getReference().toString() + "\t" + previous1.getAlternateAlleles()); } else if (iter2.hasNext()) { // just skip remaining variants // fixed bug/ was iter1 changed to iter2 VariantContext current = iter2.next(); countFile2++; if (previous2 != null && current != null && comparator.compare(previous2, current) > 0) { throw new IllegalStateException( previous2.getContig() + ":" + previous2.getStart() + " > " + current.getContig() + ":" + current.getStart()); } previous2 = current; // logger.info("Skipping: " + previous2.getContig() + ":" + previous2.getStart() + "\t" + // previous2.getReference().toString() + "\t" + previous2.getAlternateAlleles()); } else { throw new IllegalStateException("Error should not of reached this point"); } } reader1.close(); reader2.close(); logger.info(count + " merged variants"); logger.info(countFile1 + " variants in " + vcf1.getAbsolutePath()); logger.info(countFile2 + " variants in " + vcf2.getAbsolutePath()); } catch (Exception e) { e.printStackTrace(); } finally { if (writer != null) { try { logger.info("Flushing writer"); writer.close(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } logger.info("finished merging vcfs"); }