/** Sets the variable in a given tier to the specified list. */ public void setTier(int tier, List<String> vars) { ensureTiers(tier); Set<MyNode> _tier = tierSpecs.get(tier); if (_tier != null) _tier.clear(); for (String var : vars) { addToTier(tier, var); } }
private Set<Set<Integer>> finishESeeds(Set<Set<Integer>> ESeeds) { log("Growing Effect Seeds.", true); Set<Set<Integer>> grown = new HashSet<Set<Integer>>(); List<Integer> _variables = new ArrayList<Integer>(); for (int i = 0; i < variables.size(); i++) _variables.add(i); // Lax grow phase with speedup. if (algType == AlgType.lax) { Set<Integer> t = new HashSet<Integer>(); int count = 0; int total = ESeeds.size(); do { if (!ESeeds.iterator().hasNext()) { break; } Set<Integer> cluster = ESeeds.iterator().next(); Set<Integer> _cluster = new HashSet<Integer>(cluster); if (extraShuffle) { Collections.shuffle(_variables); } for (int o : _variables) { if (_cluster.contains(o)) continue; List<Integer> _cluster2 = new ArrayList<Integer>(_cluster); int rejected = 0; int accepted = 0; ChoiceGenerator gen = new ChoiceGenerator(_cluster2.size(), 2); int[] choice; while ((choice = gen.next()) != null) { int n1 = _cluster2.get(choice[0]); int n2 = _cluster2.get(choice[1]); t.clear(); t.add(n1); t.add(n2); t.add(o); if (!ESeeds.contains(t)) { rejected++; } else { accepted++; } } if (rejected > accepted) { continue; } _cluster.add(o); // if (!(avgSumLnP(new ArrayList<Integer>(_cluster)) > -10)) { // _cluster.remove(o); // } } // This takes out all pure clusters that are subsets of _cluster. ChoiceGenerator gen2 = new ChoiceGenerator(_cluster.size(), 3); int[] choice2; List<Integer> _cluster3 = new ArrayList<Integer>(_cluster); while ((choice2 = gen2.next()) != null) { int n1 = _cluster3.get(choice2[0]); int n2 = _cluster3.get(choice2[1]); int n3 = _cluster3.get(choice2[2]); t.clear(); t.add(n1); t.add(n2); t.add(n3); ESeeds.remove(t); } if (verbose) { System.out.println( "Grown " + (++count) + " of " + total + ": " + variablesForIndices(new ArrayList<Integer>(_cluster))); } grown.add(_cluster); } while (!ESeeds.isEmpty()); } // Lax grow phase without speedup. if (algType == AlgType.laxWithSpeedup) { int count = 0; int total = ESeeds.size(); // Optimized lax version of grow phase. for (Set<Integer> cluster : new HashSet<Set<Integer>>(ESeeds)) { Set<Integer> _cluster = new HashSet<Integer>(cluster); if (extraShuffle) { Collections.shuffle(_variables); } for (int o : _variables) { if (_cluster.contains(o)) continue; List<Integer> _cluster2 = new ArrayList<Integer>(_cluster); int rejected = 0; int accepted = 0; // ChoiceGenerator gen = new ChoiceGenerator(_cluster2.size(), 2); int[] choice; while ((choice = gen.next()) != null) { int n1 = _cluster2.get(choice[0]); int n2 = _cluster2.get(choice[1]); Set<Integer> triple = triple(n1, n2, o); if (!ESeeds.contains(triple)) { rejected++; } else { accepted++; } } // if (rejected > accepted) { continue; } // System.out.println("Adding " + o + " to " + cluster); _cluster.add(o); } for (Set<Integer> c : new HashSet<Set<Integer>>(ESeeds)) { if (_cluster.containsAll(c)) { ESeeds.remove(c); } } if (verbose) { System.out.println("Grown " + (++count) + " of " + total + ": " + _cluster); } grown.add(_cluster); } } // Strict grow phase. if (algType == AlgType.strict) { Set<Integer> t = new HashSet<Integer>(); int count = 0; int total = ESeeds.size(); do { if (!ESeeds.iterator().hasNext()) { break; } Set<Integer> cluster = ESeeds.iterator().next(); Set<Integer> _cluster = new HashSet<Integer>(cluster); if (extraShuffle) { Collections.shuffle(_variables); } VARIABLES: for (int o : _variables) { if (_cluster.contains(o)) continue; List<Integer> _cluster2 = new ArrayList<Integer>(_cluster); ChoiceGenerator gen = new ChoiceGenerator(_cluster2.size(), 2); int[] choice; while ((choice = gen.next()) != null) { int n1 = _cluster2.get(choice[0]); int n2 = _cluster2.get(choice[1]); t.clear(); t.add(n1); t.add(n2); t.add(o); if (!ESeeds.contains(t)) { continue VARIABLES; } // if (avgSumLnP(new ArrayList<Integer>(t)) < -10) continue // CLUSTER; } _cluster.add(o); } // This takes out all pure clusters that are subsets of _cluster. ChoiceGenerator gen2 = new ChoiceGenerator(_cluster.size(), 3); int[] choice2; List<Integer> _cluster3 = new ArrayList<Integer>(_cluster); while ((choice2 = gen2.next()) != null) { int n1 = _cluster3.get(choice2[0]); int n2 = _cluster3.get(choice2[1]); int n3 = _cluster3.get(choice2[2]); t.clear(); t.add(n1); t.add(n2); t.add(n3); ESeeds.remove(t); } if (verbose) { System.out.println("Grown " + (++count) + " of " + total + ": " + _cluster); } grown.add(_cluster); } while (!ESeeds.isEmpty()); } // Optimized pick phase. log("Choosing among grown Effect Clusters.", true); for (Set<Integer> l : grown) { ArrayList<Integer> _l = new ArrayList<Integer>(l); Collections.sort(_l); if (verbose) { log("Grown: " + variablesForIndices(_l), false); } } Set<Set<Integer>> out = new HashSet<Set<Integer>>(); List<Set<Integer>> list = new ArrayList<Set<Integer>>(grown); // final Map<Set<Integer>, Double> pValues = new HashMap<Set<Integer>, Double>(); // // for (Set<Integer> o : grown) { // pValues.put(o, getP(new ArrayList<Integer>(o))); // } Collections.sort( list, new Comparator<Set<Integer>>() { @Override public int compare(Set<Integer> o1, Set<Integer> o2) { // if (o1.size() == o2.size()) { // double chisq1 = pValues.get(o1); // double chisq2 = pValues.get(o2); // return Double.compare(chisq2, chisq1); // } return o2.size() - o1.size(); } }); // for (Set<Integer> o : list) { // if (pValues.get(o) < alpha) continue; // System.out.println(variablesForIndices(new ArrayList<Integer>(o)) + " p = " + // pValues.get(o)); // } Set<Integer> all = new HashSet<Integer>(); CLUSTER: for (Set<Integer> cluster : list) { // if (pValues.get(cluster) < alpha) continue; for (Integer i : cluster) { if (all.contains(i)) continue CLUSTER; } out.add(cluster); // if (getPMulticluster(out) < alpha) { // out.remove(cluster); // continue; // } all.addAll(cluster); } return out; }