public double[][] simulateLocations() { NodeRef root = m_tree.getRoot(); // assume uniform double[][] latLongs = new double[m_tree.getNodeCount()][2]; double rootLat = MathUtils.nextDouble() * (maxLat - minLat) + minLat; double rootLong = MathUtils.nextDouble() * (maxLong - minLong) + minLong; int rootNum = root.getNumber(); latLongs[rootNum][LATITUDE_INDEX] = rootLat; latLongs[rootNum][LONGITUDE_INDEX] = rootLong; traverse(root, latLongs[rootNum], latLongs); return latLongs; }
@Override public double doOperation() throws OperatorFailedException { apspnet.beginNetworkEdit(); double b = (1.0 - scalingFactor) * (1.0 - scalingFactor) / scalingFactor; double c = scalingFactor / (1.0 - scalingFactor); double y = MathUtils.nextDouble(); double s = b * (y + c) * (y + c); int i = MathUtils.nextInt(apspnet.getNumberOfTetraTrees()); apspnet.setOneHybPopValue(i, s * apspnet.getOneHybPopValue(i)); apspnet.endNetworkEdit(); return 0.0; // this way of scaling, with proposal proportional to x^-(1/2) has hastings ratio 1 }
public static void checkTree(TreeModel treeModel) { // todo Should only be run if there exists a zero-length interval // TreeModel treeModel = (TreeModel) tree; for (int i = 0; i < treeModel.getInternalNodeCount(); i++) { NodeRef node = treeModel.getInternalNode(i); if (node != treeModel.getRoot()) { double parentHeight = treeModel.getNodeHeight(treeModel.getParent(node)); double childHeight0 = treeModel.getNodeHeight(treeModel.getChild(node, 0)); double childHeight1 = treeModel.getNodeHeight(treeModel.getChild(node, 1)); double maxChild = childHeight0; if (childHeight1 > maxChild) maxChild = childHeight1; double newHeight = maxChild + MathUtils.nextDouble() * (parentHeight - maxChild); treeModel.setNodeHeight(node, newHeight); } } treeModel.pushTreeChangedEvent(); }
/** change the parameter and return the hastings ratio. */ public final double doOperation() throws OperatorFailedException { final double scale = (scaleFactor + (MathUtils.nextDouble() * ((1.0 / scaleFactor) - scaleFactor))); int goingUp = 0, goingDown = 0; if (upParameter != null) { for (Scalable.Default up : upParameter) { goingUp += up.scaleAllAndNotify(scale, -1); } } if (downParameter != null) { for (Scalable.Default dn : downParameter) { goingDown += dn.scaleAllAndNotify(1.0 / scale, -1); } } return (goingUp - goingDown - 2) * Math.log(scale); }
public void proposeTree() throws OperatorFailedException { TreeModel tree = c2cLikelihood.getTreeModel(); BranchMapModel branchMap = c2cLikelihood.getBranchMap(); NodeRef i; double oldMinAge, newMinAge, newRange, oldRange, newAge, q; // choose a random node avoiding root, and nodes that are ineligible for this move because they // have nowhere to // go final int nodeCount = tree.getNodeCount(); do { i = tree.getNode(MathUtils.nextInt(nodeCount)); } while (tree.getRoot() == i || !eligibleForMove(i, tree, branchMap)); final NodeRef iP = tree.getParent(i); // this one can go anywhere NodeRef j = tree.getNode(MathUtils.nextInt(tree.getNodeCount())); NodeRef k = tree.getParent(j); while ((k != null && tree.getNodeHeight(k) <= tree.getNodeHeight(i)) || (i == j)) { j = tree.getNode(MathUtils.nextInt(tree.getNodeCount())); k = tree.getParent(j); } if (iP == tree.getRoot() || j == tree.getRoot()) { throw new OperatorFailedException("Root changes not allowed!"); } if (k == iP || j == iP || k == i) throw new OperatorFailedException("move failed"); final NodeRef CiP = getOtherChild(tree, iP, i); NodeRef PiP = tree.getParent(iP); newMinAge = Math.max(tree.getNodeHeight(i), tree.getNodeHeight(j)); newRange = tree.getNodeHeight(k) - newMinAge; newAge = newMinAge + (MathUtils.nextDouble() * newRange); oldMinAge = Math.max(tree.getNodeHeight(i), tree.getNodeHeight(CiP)); oldRange = tree.getNodeHeight(PiP) - oldMinAge; q = newRange / Math.abs(oldRange); // need to account for the random repainting of iP if (branchMap.get(PiP.getNumber()) != branchMap.get(CiP.getNumber())) { q *= 0.5; } if (branchMap.get(k.getNumber()) != branchMap.get(j.getNumber())) { q *= 2; } tree.beginTreeEdit(); if (j == tree.getRoot()) { // 1. remove edges <iP, CiP> tree.removeChild(iP, CiP); tree.removeChild(PiP, iP); // 2. add edges <k, iP>, <iP, j>, <PiP, CiP> tree.addChild(iP, j); tree.addChild(PiP, CiP); // iP is the new root tree.setRoot(iP); } else if (iP == tree.getRoot()) { // 1. remove edges <k, j>, <iP, CiP>, <PiP, iP> tree.removeChild(k, j); tree.removeChild(iP, CiP); // 2. add edges <k, iP>, <iP, j>, <PiP, CiP> tree.addChild(iP, j); tree.addChild(k, iP); // CiP is the new root tree.setRoot(CiP); } else { // 1. remove edges <k, j>, <iP, CiP>, <PiP, iP> tree.removeChild(k, j); tree.removeChild(iP, CiP); tree.removeChild(PiP, iP); // 2. add edges <k, iP>, <iP, j>, <PiP, CiP> tree.addChild(iP, j); tree.addChild(k, iP); tree.addChild(PiP, CiP); } tree.setNodeHeight(iP, newAge); tree.endTreeEdit(); // logq = Math.log(q); // repaint the parent to match either its new parent or its new child (50% chance of each). if (MathUtils.nextInt(2) == 0) { branchMap.set(iP.getNumber(), branchMap.get(k.getNumber()), true); } else { branchMap.set(iP.getNumber(), branchMap.get(j.getNumber()), true); } if (DEBUG) { c2cLikelihood.checkPartitions(); } }
public void operateOneNode(final double factor) throws OperatorFailedException { // #print "operate: tree", ut.treerep(t) // if( verbose) System.out.println(" Mau at start: " + tree.getSimpleTree()); final int count = multree.getExternalNodeCount(); assert count == species.nSpSeqs(); NodeRef[] order = new NodeRef[2 * count - 1]; boolean[] swapped = new boolean[count - 1]; mauCanonical(multree, order, swapped); // internal node to change // count-1 - number of internal nodes int which = MathUtils.nextInt(count - 1); FixedBitSet left = new FixedBitSet(count); FixedBitSet right = new FixedBitSet(count); for (int k = 0; k < 2 * which + 1; k += 2) { left.set(multree.speciesIndex(order[k])); } for (int k = 2 * (which + 1); k < 2 * count; k += 2) { right.set(multree.speciesIndex(order[k])); } double newHeight; if (factor > 0) { newHeight = multree.getNodeHeight(order[2 * which + 1]) * factor; } else { final double limit = species.speciationUpperBound(left, right); newHeight = MathUtils.nextDouble() * limit; } multree.beginTreeEdit(); multree.setPreorderIndices(preOrderIndexBefore); final NodeRef node = order[2 * which + 1]; multree.setNodeHeight(node, newHeight); mauReconstruct(multree, order, swapped); // restore pre-order of pops - { multree.setPreorderIndices(preOrderIndexAfter); double[] splitPopValues = null; for (int k = 0; k < preOrderIndexBefore.length; ++k) { final int b = preOrderIndexBefore[k]; if (b >= 0) { final int a = preOrderIndexAfter[k]; if (a != b) { // if( verbose) System.out.println("pops: " + a + " <- " + b); final Parameter p1 = multree.sppSplitPopulations; if (splitPopValues == null) { splitPopValues = p1.getParameterValues(); } if (multree.constPopulation()) { p1.setParameterValue(count + a, splitPopValues[count + b]); } else { for (int i = 0; i < 2; ++i) { p1.setParameterValue(count + 2 * a + i, splitPopValues[count + 2 * b + i]); } } } } } } multree.endTreeEdit(); }