@Test(enabled = false) /** Tests of performance. "enabled = false" for the standard testing. */ public void performance() { long startTime, endTime; final int nbTest = 1000; CurrencyAmount pvPayerLongExplicit = CurrencyAmount.of(CUR, 0.0); CurrencyAmount pvPayerLongIntegration = CurrencyAmount.of(CUR, 0.0); startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { pvPayerLongExplicit = METHOD_HW_APPROXIMATION.presentValue(SWAPTION_PAYER_LONG, BUNDLE_HW); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " pv swaption Hull-White approximation method: " + (endTime - startTime) + " ms"); // Performance note: HW price: 8-Jul-11: On Mac Pro 3.2 GHz Quad-Core Intel Xeon: 330 ms for // 10000 swaptions. startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { METHOD_HW_APPROXIMATION.presentValueHullWhiteSensitivity(SWAPTION_PAYER_LONG, BUNDLE_HW); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " HW sensitivity swaption Hull-White approximation method: " + (endTime - startTime) + " ms"); // Performance note: HW parameters sensitivity: 8-Jul-11: On Mac Pro 3.2 GHz Quad-Core Intel // Xeon: 525 ms for 10000 swaptions. startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { METHOD_HW_APPROXIMATION.presentValueCurveSensitivity(SWAPTION_PAYER_LONG, BUNDLE_HW); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " curve sensitivity swaption Hull-White approximation method: " + (endTime - startTime) + " ms"); // Performance note: HW curve sensitivity: 8-Jul-11: On Mac Pro 3.2 GHz Quad-Core Intel Xeon: // 550 ms for 10000 swaptions. startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { pvPayerLongIntegration = METHOD_HW_INTEGRATION.presentValue(SWAPTION_PAYER_LONG, BUNDLE_HW); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " cash swaption Hull-White numerical integration method: " + (endTime - startTime) + " ms"); // Performance note: HW numerical integration: 8-Jul-11: On Mac Pro 3.2 GHz Quad-Core Intel // Xeon: 1300 ms for 10000 swaptions. double difference = 0.0; difference = pvPayerLongExplicit.getAmount() - pvPayerLongIntegration.getAmount(); System.out.println("Difference: " + difference); }
@Test(enabled = true) /** Tests approximation error. "enabled = false" for the standard testing. */ public void errorAnalysis() { double bp1 = 10000; double errorLimit = 5.0E-1; // 0.5 bp ParRateCalculator prc = ParRateCalculator.getInstance(); double forward = prc.visit(SWAP_PAYER, CURVES); double[] strikeRel = new double[] {-0.0250, -0.0150, -0.0050, 0.0, 0.0050, 0.0150, 0.0250}; double[] pvPayerApproximation = new double[strikeRel.length]; double[] pvPayerIntegration = new double[strikeRel.length]; double[] pvReceiverApproximation = new double[strikeRel.length]; double[] pvReceiverIntegration = new double[strikeRel.length]; for (int loopstrike = 0; loopstrike < strikeRel.length; loopstrike++) { SwapFixedIborDefinition swapStrikePayerDefinition = SwapFixedIborDefinition.from( SETTLEMENT_DATE, CMS_INDEX, bp1, forward + strikeRel[loopstrike], FIXED_IS_PAYER); SwaptionCashFixedIborDefinition swaptionStrikePayerDefinition = SwaptionCashFixedIborDefinition.from(EXPIRY_DATE, swapStrikePayerDefinition, IS_LONG); SwaptionCashFixedIbor swaptionStrikePayer = swaptionStrikePayerDefinition.toDerivative(REFERENCE_DATE, CURVES_NAME); pvPayerApproximation[loopstrike] = METHOD_HW_APPROXIMATION.presentValue(swaptionStrikePayer, BUNDLE_HW).getAmount(); pvPayerIntegration[loopstrike] = METHOD_HW_INTEGRATION.presentValue(swaptionStrikePayer, BUNDLE_HW).getAmount(); assertEquals( "Swaption cash - Hull-White - present value - explicit/numerical integration", pvPayerApproximation[loopstrike], pvPayerIntegration[loopstrike], errorLimit); SwapFixedIborDefinition swapStrikeReceiverDefinition = SwapFixedIborDefinition.from( SETTLEMENT_DATE, CMS_INDEX, bp1, forward + strikeRel[loopstrike], !FIXED_IS_PAYER); SwaptionCashFixedIborDefinition swaptionStrikeReceiverDefinition = SwaptionCashFixedIborDefinition.from(EXPIRY_DATE, swapStrikeReceiverDefinition, IS_LONG); SwaptionCashFixedIbor swaptionStrikeReceiver = swaptionStrikeReceiverDefinition.toDerivative(REFERENCE_DATE, CURVES_NAME); pvReceiverApproximation[loopstrike] = METHOD_HW_APPROXIMATION.presentValue(swaptionStrikeReceiver, BUNDLE_HW).getAmount(); pvReceiverIntegration[loopstrike] = METHOD_HW_INTEGRATION.presentValue(swaptionStrikeReceiver, BUNDLE_HW).getAmount(); assertEquals( "Swaption cash - Hull-White - present value - explicit/numerical integration", pvReceiverApproximation[loopstrike], pvReceiverIntegration[loopstrike], errorLimit); } }
@Test /** Tests the Hull-White parameters sensitivity. */ public void hullWhiteSensitivity() { double[] hwSensitivity = METHOD_HW_APPROXIMATION.presentValueHullWhiteSensitivity(SWAPTION_PAYER_LONG, BUNDLE_HW); int nbVolatility = PARAMETERS_HW.getVolatility().length; double shiftVol = 1.0E-6; double[] volatilityBumped = new double[nbVolatility]; System.arraycopy(PARAMETERS_HW.getVolatility(), 0, volatilityBumped, 0, nbVolatility); double[] volatilityTime = new double[nbVolatility - 1]; System.arraycopy(PARAMETERS_HW.getVolatilityTime(), 1, volatilityTime, 0, nbVolatility - 1); double[] pvBumpedPlus = new double[nbVolatility]; double[] pvBumpedMinus = new double[nbVolatility]; HullWhiteOneFactorPiecewiseConstantParameters parametersBumped = new HullWhiteOneFactorPiecewiseConstantParameters( PARAMETERS_HW.getMeanReversion(), volatilityBumped, volatilityTime); HullWhiteOneFactorPiecewiseConstantDataBundle bundleBumped = new HullWhiteOneFactorPiecewiseConstantDataBundle(parametersBumped, CURVES); double[] hwSensitivityExpected = new double[nbVolatility]; for (int loopvol = 0; loopvol < nbVolatility; loopvol++) { volatilityBumped[loopvol] += shiftVol; parametersBumped.setVolatility(volatilityBumped); pvBumpedPlus[loopvol] = METHOD_HW_APPROXIMATION.presentValue(SWAPTION_PAYER_LONG, bundleBumped).getAmount(); volatilityBumped[loopvol] -= 2 * shiftVol; parametersBumped.setVolatility(volatilityBumped); pvBumpedMinus[loopvol] = METHOD_HW_APPROXIMATION.presentValue(SWAPTION_PAYER_LONG, bundleBumped).getAmount(); hwSensitivityExpected[loopvol] = (pvBumpedPlus[loopvol] - pvBumpedMinus[loopvol]) / (2 * shiftVol); assertEquals( "Swaption - Hull-White sensitivity adjoint: derivative " + loopvol + " - difference:" + (hwSensitivityExpected[loopvol] - hwSensitivity[loopvol]), hwSensitivityExpected[loopvol], hwSensitivity[loopvol], 2.0E+5); volatilityBumped[loopvol] = PARAMETERS_HW.getVolatility()[loopvol]; } }
@Test /** Compare approximate formula with numerical integration. */ public void comparison() { double bp1 = 10000; CurrencyAmount pvPayerLongExplicit = METHOD_HW_APPROXIMATION.presentValue(SWAPTION_PAYER_LONG, BUNDLE_HW); CurrencyAmount pvPayerLongIntegration = METHOD_HW_INTEGRATION.presentValue(SWAPTION_PAYER_LONG, BUNDLE_HW); assertEquals( "Swaption cash - Hull-White - present value - explicit/numerical integration", pvPayerLongExplicit.getAmount() / NOTIONAL * bp1, pvPayerLongIntegration.getAmount() / NOTIONAL * bp1, 3.0E-1); CurrencyAmount pvPayerShortExplicit = METHOD_HW_APPROXIMATION.presentValue(SWAPTION_PAYER_SHORT, BUNDLE_HW); CurrencyAmount pvPayerShortIntegration = METHOD_HW_INTEGRATION.presentValue(SWAPTION_PAYER_SHORT, BUNDLE_HW); assertEquals( "Swaption cash - Hull-White - present value - explicit/numerical integration", pvPayerShortExplicit.getAmount() / NOTIONAL * bp1, pvPayerShortIntegration.getAmount() / NOTIONAL * bp1, 3.0E-1); CurrencyAmount pvReceiverLongExplicit = METHOD_HW_APPROXIMATION.presentValue(SWAPTION_RECEIVER_LONG, BUNDLE_HW); CurrencyAmount pvReceiverLongIntegration = METHOD_HW_INTEGRATION.presentValue(SWAPTION_RECEIVER_LONG, BUNDLE_HW); assertEquals( "Swaption cash - Hull-White - present value - explicit/numerical integration", pvReceiverLongExplicit.getAmount() / NOTIONAL * bp1, pvReceiverLongIntegration.getAmount() / NOTIONAL * bp1, 5.0E-1); CurrencyAmount pvReceiverShortExplicit = METHOD_HW_APPROXIMATION.presentValue(SWAPTION_RECEIVER_SHORT, BUNDLE_HW); CurrencyAmount pvReceiverShortIntegration = METHOD_HW_INTEGRATION.presentValue(SWAPTION_RECEIVER_SHORT, BUNDLE_HW); assertEquals( "Swaption cash - Hull-White - present value - explicit/numerical integration", pvReceiverShortExplicit.getAmount() / NOTIONAL * bp1, pvReceiverShortIntegration.getAmount() / NOTIONAL * bp1, 5.0E-1); }
@Test /** Tests the curve sensitivity. */ public void presentValueCurveSensitivity() { InterestRateCurveSensitivity pvsSwaption = METHOD_HW_APPROXIMATION.presentValueCurveSensitivity(SWAPTION_PAYER_LONG, BUNDLE_HW); pvsSwaption = pvsSwaption.cleaned(); final double deltaTolerancePrice = 1.0E+4; // Testing note: Sensitivity is for a movement of 1. 1E+2 = 1 cent for a 1 bp move. Tolerance // increased to cope with numerical imprecision of finite difference. final double deltaShift = 1.0E-6; // 1. Forward curve sensitivity final String bumpedCurveName = "Bumped Curve"; final SwaptionCashFixedIbor swptBumpedForward = SWAPTION_PAYER_LONG_DEFINITION.toDerivative( REFERENCE_DATE, new String[] {CURVES_NAME[0], bumpedCurveName}); DoubleAVLTreeSet forwardTime = new DoubleAVLTreeSet(); for (int loopcpn = 0; loopcpn < SWAPTION_PAYER_LONG.getUnderlyingSwap().getSecondLeg().getNumberOfPayments(); loopcpn++) { CouponIbor cpn = (CouponIbor) SWAPTION_PAYER_LONG.getUnderlyingSwap().getSecondLeg().getNthPayment(loopcpn); forwardTime.add(cpn.getFixingPeriodStartTime()); forwardTime.add(cpn.getFixingPeriodEndTime()); } double[] nodeTimesForward = forwardTime.toDoubleArray(); final double[] sensiForwardMethod = SensitivityFiniteDifference.curveSensitivity( swptBumpedForward, BUNDLE_HW, CURVES_NAME[1], bumpedCurveName, nodeTimesForward, deltaShift, METHOD_HW_APPROXIMATION); final List<DoublesPair> sensiPvForward = pvsSwaption.getSensitivities().get(CURVES_NAME[1]); for (int loopnode = 0; loopnode < sensiForwardMethod.length; loopnode++) { final DoublesPair pairPv = sensiPvForward.get(loopnode); assertEquals( "Sensitivity swaption pv to forward curve: Node " + loopnode, nodeTimesForward[loopnode], pairPv.getFirst(), 1E-8); assertEquals( "Sensitivity finite difference method: node sensitivity " + loopnode, sensiForwardMethod[loopnode], pairPv.second, deltaTolerancePrice); } // 2. Discounting curve sensitivity final SwaptionCashFixedIbor swptBumpedDisc = SWAPTION_PAYER_LONG_DEFINITION.toDerivative( REFERENCE_DATE, new String[] {bumpedCurveName, CURVES_NAME[1]}); DoubleAVLTreeSet discTime = new DoubleAVLTreeSet(); discTime.add(SWAPTION_PAYER_LONG.getSettlementTime()); for (int loopcpn = 0; loopcpn < SWAPTION_PAYER_LONG.getUnderlyingSwap().getSecondLeg().getNumberOfPayments(); loopcpn++) { CouponIbor cpn = (CouponIbor) SWAPTION_PAYER_LONG.getUnderlyingSwap().getSecondLeg().getNthPayment(loopcpn); discTime.add(cpn.getPaymentTime()); } double[] nodeTimesDisc = discTime.toDoubleArray(); final double[] sensiDiscMethod = SensitivityFiniteDifference.curveSensitivity( swptBumpedDisc, BUNDLE_HW, CURVES_NAME[0], bumpedCurveName, nodeTimesDisc, deltaShift, METHOD_HW_APPROXIMATION); assertEquals( "Sensitivity finite difference method: number of node", 11, sensiDiscMethod.length); final List<DoublesPair> sensiPvDisc = pvsSwaption.getSensitivities().get(CURVES_NAME[0]); for (int loopnode = 0; loopnode < sensiDiscMethod.length; loopnode++) { final DoublesPair pairPv = sensiPvDisc.get(loopnode); assertEquals( "Sensitivity swaption pv to forward curve: Node " + loopnode, nodeTimesDisc[loopnode], pairPv.getFirst(), 1E-8); assertEquals( "Sensitivity finite difference method: node sensitivity", sensiDiscMethod[loopnode], pairPv.second, deltaTolerancePrice); } }