Esempio n. 1
0
  /**
   * Calculates the class membership probabilities for the given test instance.
   *
   * @param instance the instance to be classified
   * @return predicted class probability distribution
   * @exception Exception if distribution can't be computed
   */
  @Override
  public double[] distributionForInstance(Instance instance) throws Exception {

    double[] probs = new double[instance.numClasses()];
    int attIndex;

    for (int j = 0; j < instance.numClasses(); j++) {
      probs[j] = 1;
      Enumeration<Attribute> enumAtts = instance.enumerateAttributes();
      attIndex = 0;
      while (enumAtts.hasMoreElements()) {
        Attribute attribute = enumAtts.nextElement();
        if (!instance.isMissing(attribute)) {
          if (attribute.isNominal()) {
            probs[j] *= m_Counts[j][attIndex][(int) instance.value(attribute)];
          } else {
            probs[j] *=
                normalDens(instance.value(attribute), m_Means[j][attIndex], m_Devs[j][attIndex]);
          }
        }
        attIndex++;
      }
      probs[j] *= m_Priors[j];
    }

    // Normalize probabilities
    Utils.normalize(probs);

    return probs;
  }
  /**
   * Sets up the structure for the plot instances. Sets m_PlotInstances to null if instances are not
   * saved for visualization.
   *
   * @see #getSaveForVisualization()
   */
  protected void determineFormat() {
    FastVector hv;
    Attribute predictedClass;
    Attribute classAt;
    FastVector attVals;
    int i;

    if (!m_SaveForVisualization) {
      m_PlotInstances = null;
      return;
    }

    hv = new FastVector();

    classAt = m_Instances.attribute(m_ClassIndex);
    if (classAt.isNominal()) {
      attVals = new FastVector();
      for (i = 0; i < classAt.numValues(); i++) attVals.addElement(classAt.value(i));
      predictedClass = new Attribute("predicted" + classAt.name(), attVals);
    } else {
      predictedClass = new Attribute("predicted" + classAt.name());
    }

    for (i = 0; i < m_Instances.numAttributes(); i++) {
      if (i == m_Instances.classIndex()) hv.addElement(predictedClass);
      hv.addElement(m_Instances.attribute(i).copy());
    }

    m_PlotInstances =
        new Instances(m_Instances.relationName() + "_predicted", hv, m_Instances.numInstances());
    m_PlotInstances.setClassIndex(m_ClassIndex + 1);
  }
  /**
   * Método que inicializa uma regra com os valores obtidos atraves do Apriori.
   *
   * @param b Corpo da regre
   * @param h Cabecao da regra
   * @param conf Confianca da regra
   * @param e Lista com os atributos da regra
   * @param c Atributo da classe da regra
   */
  public Regra(ItemSet b, ItemSet h, double conf, Enumeration<Attribute> e, Attribute c)
      throws Exception {

    cabeca = h.itemAt(0);
    confianca = conf;
    int corpoTemp[] = b.items();
    atributosNaoVazios = 0;
    corpo = new Atributo[corpoTemp.length];
    int i = 0;
    while (e.hasMoreElements()) {
      Attribute att = (Attribute) e.nextElement();
      // attributes.add(att);
      if (att.isNominal()) {
        if (corpoTemp[i] == -1) {
          AtributoNominal vazio = new AtributoNominal(true, att, i);
          corpo[i++] = vazio;
        } else {
          AtributoNominal nominal =
              new AtributoNominal(corpoTemp[i], AtributoNominal.igual, att, i);
          corpo[i++] = nominal;
        }

      } else {
        throw new Exception("Atributo não nominal!");
      }
    }

    classe = c;
    matrizContigencia = new MatrizContingencia();
    getNumAtributosNaoVazios();
  }
Esempio n. 4
0
  /** Computes average class values for each attribute and value */
  private void computeAverageClassValues() {

    double totalCounts, sum;
    Instance instance;
    double[] counts;

    double[][] avgClassValues = new double[getInputFormat().numAttributes()][0];
    m_Indices = new int[getInputFormat().numAttributes()][0];
    for (int j = 0; j < getInputFormat().numAttributes(); j++) {
      Attribute att = getInputFormat().attribute(j);
      if (att.isNominal()) {
        avgClassValues[j] = new double[att.numValues()];
        counts = new double[att.numValues()];
        for (int i = 0; i < getInputFormat().numInstances(); i++) {
          instance = getInputFormat().instance(i);
          if (!instance.classIsMissing() && (!instance.isMissing(j))) {
            counts[(int) instance.value(j)] += instance.weight();
            avgClassValues[j][(int) instance.value(j)] += instance.weight() * instance.classValue();
          }
        }
        sum = Utils.sum(avgClassValues[j]);
        totalCounts = Utils.sum(counts);
        if (Utils.gr(totalCounts, 0)) {
          for (int k = 0; k < att.numValues(); k++) {
            if (Utils.gr(counts[k], 0)) {
              avgClassValues[j][k] /= counts[k];
            } else {
              avgClassValues[j][k] = sum / totalCounts;
            }
          }
        }
        m_Indices[j] = Utils.sort(avgClassValues[j]);
      }
    }
  }
Esempio n. 5
0
 /**
  * Compute the number of all possible conditions that could appear in a rule of a given data. For
  * nominal attributes, it's the number of values that could appear; for numeric attributes, it's
  * the number of values * 2, i.e. <= and >= are counted as different possible conditions.
  *
  * @param data the given data
  * @return number of all conditions of the data
  */
 public static double numAllConditions(Instances data) {
   double total = 0;
   Enumeration attEnum = data.enumerateAttributes();
   while (attEnum.hasMoreElements()) {
     Attribute att = (Attribute) attEnum.nextElement();
     if (att.isNominal()) total += (double) att.numValues();
     else total += 2.0 * (double) data.numDistinctValues(att);
   }
   return total;
 }
Esempio n. 6
0
 /** Find the fold attribute within a dataset. */
 private Attribute getAttribute(Instances data) {
   SingleIndex index = new SingleIndex(super.getAttributeIndex());
   index.setUpper(data.numAttributes() - 1);
   Attribute att = data.attribute(index.getIndex());
   if (att == null)
     throw new NoSuchElementException(
         "attribute #" + super.getAttributeIndex() + " does not exist");
   if (!att.isNominal() && !att.isString())
     throw new IllegalArgumentException("Attribute '" + att + "' is not nominal");
   return att;
 }
Esempio n. 7
0
  /**
   * Constructs an instance suitable for passing to the model for scoring
   *
   * @param incoming the incoming instance
   * @return an instance with values mapped to be consistent with what the model is expecting
   */
  protected Instance mapIncomingFieldsToModelFields(Instance incoming) {
    Instances modelHeader = m_model.getHeader();
    double[] vals = new double[modelHeader.numAttributes()];

    for (int i = 0; i < modelHeader.numAttributes(); i++) {

      if (m_attributeMap[i] < 0) {
        // missing or type mismatch
        vals[i] = Utils.missingValue();
        continue;
      }

      Attribute modelAtt = modelHeader.attribute(i);
      Attribute incomingAtt = incoming.dataset().attribute(m_attributeMap[i]);

      if (incoming.isMissing(incomingAtt.index())) {
        vals[i] = Utils.missingValue();
        continue;
      }

      if (modelAtt.isNumeric()) {
        vals[i] = incoming.value(m_attributeMap[i]);
      } else if (modelAtt.isNominal()) {
        String incomingVal = incoming.stringValue(m_attributeMap[i]);
        int modelIndex = modelAtt.indexOfValue(incomingVal);

        if (modelIndex < 0) {
          vals[i] = Utils.missingValue();
        } else {
          vals[i] = modelIndex;
        }
      } else if (modelAtt.isString()) {
        vals[i] = 0;
        modelAtt.setStringValue(incoming.stringValue(m_attributeMap[i]));
      }
    }

    if (modelHeader.classIndex() >= 0) {
      // set class to missing value
      vals[modelHeader.classIndex()] = Utils.missingValue();
    }

    Instance newInst = null;
    if (incoming instanceof SparseInstance) {
      newInst = new SparseInstance(incoming.weight(), vals);
    } else {
      newInst = new DenseInstance(incoming.weight(), vals);
    }

    newInst.setDataset(modelHeader);
    return newInst;
  }
Esempio n. 8
0
  /**
   * Convert a single instance over if the class is nominal. The converted instance is added to the
   * end of the output queue.
   *
   * @param instance the instance to convert
   */
  private void convertInstanceNominal(Instance instance) {

    if (!m_needToTransform) {
      push(instance);
      return;
    }

    double[] vals = new double[outputFormatPeek().numAttributes()];
    int attSoFar = 0;

    for (int j = 0; j < getInputFormat().numAttributes(); j++) {
      Attribute att = getInputFormat().attribute(j);
      if ((!att.isNominal()) || (j == getInputFormat().classIndex())) {
        vals[attSoFar] = instance.value(j);
        attSoFar++;
      } else {
        if ((att.numValues() <= 2) && (!m_TransformAll)) {
          vals[attSoFar] = instance.value(j);
          attSoFar++;
        } else {
          if (instance.isMissing(j)) {
            for (int k = 0; k < att.numValues(); k++) {
              vals[attSoFar + k] = instance.value(j);
            }
          } else {
            for (int k = 0; k < att.numValues(); k++) {
              if (k == (int) instance.value(j)) {
                vals[attSoFar + k] = 1;
              } else {
                vals[attSoFar + k] = 0;
              }
            }
          }
          attSoFar += att.numValues();
        }
      }
    }
    Instance inst = null;
    if (instance instanceof SparseInstance) {
      inst = new SparseInstance(instance.weight(), vals);
    } else {
      inst = new DenseInstance(instance.weight(), vals);
    }
    inst.setDataset(getOutputFormat());
    copyValues(inst, false, instance.dataset(), getOutputFormat());
    inst.setDataset(getOutputFormat());
    push(inst);
  }
Esempio n. 9
0
  /**
   * Determines the output format based on the input format and returns this.
   *
   * @param inputFormat the input format to base the output format on
   * @return the output format
   * @throws Exception in case the determination goes wrong
   */
  protected Instances determineOutputFormat(Instances inputFormat) throws Exception {
    Instances result;
    Attribute att;
    Attribute attSorted;
    FastVector atts;
    FastVector values;
    Vector<String> sorted;
    int i;
    int n;

    m_AttributeIndices.setUpper(inputFormat.numAttributes() - 1);

    // determine sorted indices
    atts = new FastVector();
    m_NewOrder = new int[inputFormat.numAttributes()][];
    for (i = 0; i < inputFormat.numAttributes(); i++) {
      att = inputFormat.attribute(i);
      if (!att.isNominal() || !m_AttributeIndices.isInRange(i)) {
        m_NewOrder[i] = new int[0];
        atts.addElement(inputFormat.attribute(i).copy());
        continue;
      }

      // sort labels
      sorted = new Vector<String>();
      for (n = 0; n < att.numValues(); n++) sorted.add(att.value(n));
      Collections.sort(sorted, m_Comparator);

      // determine new indices
      m_NewOrder[i] = new int[att.numValues()];
      values = new FastVector();
      for (n = 0; n < att.numValues(); n++) {
        m_NewOrder[i][n] = sorted.indexOf(att.value(n));
        values.addElement(sorted.get(n));
      }
      attSorted = new Attribute(att.name(), values);
      attSorted.setWeight(att.weight());
      atts.addElement(attSorted);
    }

    // generate new header
    result = new Instances(inputFormat.relationName(), atts, 0);
    result.setClassIndex(inputFormat.classIndex());

    return result;
  }
Esempio n. 10
0
  /**
   * Returns a description of the classifier.
   *
   * @return a description of the classifier as a string.
   */
  @Override
  public String toString() {

    if (m_Instances == null) {
      return "Naive Bayes (simple): No model built yet.";
    }
    try {
      StringBuffer text = new StringBuffer("Naive Bayes (simple)");
      int attIndex;

      for (int i = 0; i < m_Instances.numClasses(); i++) {
        text.append(
            "\n\nClass "
                + m_Instances.classAttribute().value(i)
                + ": P(C) = "
                + Utils.doubleToString(m_Priors[i], 10, 8)
                + "\n\n");
        Enumeration<Attribute> enumAtts = m_Instances.enumerateAttributes();
        attIndex = 0;
        while (enumAtts.hasMoreElements()) {
          Attribute attribute = enumAtts.nextElement();
          text.append("Attribute " + attribute.name() + "\n");
          if (attribute.isNominal()) {
            for (int j = 0; j < attribute.numValues(); j++) {
              text.append(attribute.value(j) + "\t");
            }
            text.append("\n");
            for (int j = 0; j < attribute.numValues(); j++) {
              text.append(Utils.doubleToString(m_Counts[i][attIndex][j], 10, 8) + "\t");
            }
          } else {
            text.append("Mean: " + Utils.doubleToString(m_Means[i][attIndex], 10, 8) + "\t");
            text.append("Standard Deviation: " + Utils.doubleToString(m_Devs[i][attIndex], 10, 8));
          }
          text.append("\n\n");
          attIndex++;
        }
      }

      return text.toString();
    } catch (Exception e) {
      return "Can't print Naive Bayes classifier!";
    }
  }
Esempio n. 11
0
  /**
   * Set the output format. Takes the current average class values and m_InputFormat and calls
   * setOutputFormat(Instances) appropriately.
   */
  private void setOutputFormat() {
    Instances newData;
    FastVector newAtts;

    // Compute new attributes
    newAtts = new FastVector(getInputFormat().numAttributes());
    for (int j = 0; j < getInputFormat().numAttributes(); j++) {
      Attribute att = getInputFormat().attribute(j);

      if (!att.isNominal() || !m_AttIndex.isInRange(j)) newAtts.addElement(att);
      else newAtts.addElement(new Attribute(att.name(), (FastVector) null));
    }

    // Construct new header
    newData = new Instances(getInputFormat().relationName(), newAtts, 0);
    newData.setClassIndex(getInputFormat().classIndex());

    setOutputFormat(newData);
  }
Esempio n. 12
0
  /**
   * processes the given instance (may change the provided instance) and returns the modified
   * version.
   *
   * @param instance the instance to process
   * @return the modified data
   * @throws Exception in case the processing goes wrong
   */
  protected Instance process(Instance instance) throws Exception {
    Instance result;
    Attribute att;
    double[] values;
    int i;

    // adjust indices
    values = new double[instance.numAttributes()];
    for (i = 0; i < instance.numAttributes(); i++) {
      att = instance.attribute(i);
      if (!att.isNominal() || !m_AttributeIndices.isInRange(i) || instance.isMissing(i))
        values[i] = instance.value(i);
      else values[i] = m_NewOrder[i][(int) instance.value(i)];
    }

    // create new instance
    result = new DenseInstance(instance.weight(), values);

    return result;
  }
Esempio n. 13
0
  /**
   * The procedure implementing the SMOTE algorithm. The output instances are pushed onto the output
   * queue for collection.
   *
   * @throws Exception if provided options cannot be executed on input instances
   */
  protected void doSMOTE() throws Exception {
    int minIndex = 0;
    int min = Integer.MAX_VALUE;
    if (m_DetectMinorityClass) {
      // find minority class
      int[] classCounts =
          getInputFormat().attributeStats(getInputFormat().classIndex()).nominalCounts;
      for (int i = 0; i < classCounts.length; i++) {
        if (classCounts[i] != 0 && classCounts[i] < min) {
          min = classCounts[i];
          minIndex = i;
        }
      }
    } else {
      String classVal = getClassValue();
      if (classVal.equalsIgnoreCase("first")) {
        minIndex = 1;
      } else if (classVal.equalsIgnoreCase("last")) {
        minIndex = getInputFormat().numClasses();
      } else {
        minIndex = Integer.parseInt(classVal);
      }
      if (minIndex > getInputFormat().numClasses()) {
        throw new Exception("value index must be <= the number of classes");
      }
      minIndex--; // make it an index
    }

    int nearestNeighbors;
    if (min <= getNearestNeighbors()) {
      nearestNeighbors = min - 1;
    } else {
      nearestNeighbors = getNearestNeighbors();
    }
    if (nearestNeighbors < 1) throw new Exception("Cannot use 0 neighbors!");

    // compose minority class dataset
    // also push all dataset instances
    Instances sample = getInputFormat().stringFreeStructure();
    Enumeration instanceEnum = getInputFormat().enumerateInstances();
    while (instanceEnum.hasMoreElements()) {
      Instance instance = (Instance) instanceEnum.nextElement();
      push((Instance) instance.copy());
      if ((int) instance.classValue() == minIndex) {
        sample.add(instance);
      }
    }

    // compute Value Distance Metric matrices for nominal features
    Map vdmMap = new HashMap();
    Enumeration attrEnum = getInputFormat().enumerateAttributes();
    while (attrEnum.hasMoreElements()) {
      Attribute attr = (Attribute) attrEnum.nextElement();
      if (!attr.equals(getInputFormat().classAttribute())) {
        if (attr.isNominal() || attr.isString()) {
          double[][] vdm = new double[attr.numValues()][attr.numValues()];
          vdmMap.put(attr, vdm);
          int[] featureValueCounts = new int[attr.numValues()];
          int[][] featureValueCountsByClass =
              new int[getInputFormat().classAttribute().numValues()][attr.numValues()];
          instanceEnum = getInputFormat().enumerateInstances();
          while (instanceEnum.hasMoreElements()) {
            Instance instance = (Instance) instanceEnum.nextElement();
            int value = (int) instance.value(attr);
            int classValue = (int) instance.classValue();
            featureValueCounts[value]++;
            featureValueCountsByClass[classValue][value]++;
          }
          for (int valueIndex1 = 0; valueIndex1 < attr.numValues(); valueIndex1++) {
            for (int valueIndex2 = 0; valueIndex2 < attr.numValues(); valueIndex2++) {
              double sum = 0;
              for (int classValueIndex = 0;
                  classValueIndex < getInputFormat().numClasses();
                  classValueIndex++) {
                double c1i = featureValueCountsByClass[classValueIndex][valueIndex1];
                double c2i = featureValueCountsByClass[classValueIndex][valueIndex2];
                double c1 = featureValueCounts[valueIndex1];
                double c2 = featureValueCounts[valueIndex2];
                double term1 = c1i / c1;
                double term2 = c2i / c2;
                sum += Math.abs(term1 - term2);
              }
              vdm[valueIndex1][valueIndex2] = sum;
            }
          }
        }
      }
    }

    // use this random source for all required randomness
    Random rand = new Random(getRandomSeed());

    // find the set of extra indices to use if the percentage is not evenly
    // divisible by 100
    List extraIndices = new LinkedList();
    double percentageRemainder = (getPercentage() / 100) - Math.floor(getPercentage() / 100.0);
    int extraIndicesCount = (int) (percentageRemainder * sample.numInstances());
    if (extraIndicesCount >= 1) {
      for (int i = 0; i < sample.numInstances(); i++) {
        extraIndices.add(i);
      }
    }
    Collections.shuffle(extraIndices, rand);
    extraIndices = extraIndices.subList(0, extraIndicesCount);
    Set extraIndexSet = new HashSet(extraIndices);

    // the main loop to handle computing nearest neighbors and generating SMOTE
    // examples from each instance in the original minority class data
    Instance[] nnArray = new Instance[nearestNeighbors];
    for (int i = 0; i < sample.numInstances(); i++) {
      Instance instanceI = sample.instance(i);
      // find k nearest neighbors for each instance
      List distanceToInstance = new LinkedList();
      for (int j = 0; j < sample.numInstances(); j++) {
        Instance instanceJ = sample.instance(j);
        if (i != j) {
          double distance = 0;
          attrEnum = getInputFormat().enumerateAttributes();
          while (attrEnum.hasMoreElements()) {
            Attribute attr = (Attribute) attrEnum.nextElement();
            if (!attr.equals(getInputFormat().classAttribute())) {
              double iVal = instanceI.value(attr);
              double jVal = instanceJ.value(attr);
              if (attr.isNumeric()) {
                distance += Math.pow(iVal - jVal, 2);
              } else {
                distance += ((double[][]) vdmMap.get(attr))[(int) iVal][(int) jVal];
              }
            }
          }
          distance = Math.pow(distance, .5);
          distanceToInstance.add(new Object[] {distance, instanceJ});
        }
      }

      // sort the neighbors according to distance
      Collections.sort(
          distanceToInstance,
          new Comparator() {
            public int compare(Object o1, Object o2) {
              double distance1 = (Double) ((Object[]) o1)[0];
              double distance2 = (Double) ((Object[]) o2)[0];
              return Double.compare(distance1, distance2);
            }
          });

      // populate the actual nearest neighbor instance array
      Iterator entryIterator = distanceToInstance.iterator();
      int j = 0;
      while (entryIterator.hasNext() && j < nearestNeighbors) {
        nnArray[j] = (Instance) ((Object[]) entryIterator.next())[1];
        j++;
      }

      // create synthetic examples
      int n = (int) Math.floor(getPercentage() / 100);
      while (n > 0 || extraIndexSet.remove(i)) {
        double[] values = new double[sample.numAttributes()];
        int nn = rand.nextInt(nearestNeighbors);
        attrEnum = getInputFormat().enumerateAttributes();
        while (attrEnum.hasMoreElements()) {
          Attribute attr = (Attribute) attrEnum.nextElement();
          if (!attr.equals(getInputFormat().classAttribute())) {
            if (attr.isNumeric()) {
              double dif = nnArray[nn].value(attr) - instanceI.value(attr);
              double gap = rand.nextDouble();
              values[attr.index()] = (instanceI.value(attr) + gap * dif);
            } else if (attr.isDate()) {
              double dif = nnArray[nn].value(attr) - instanceI.value(attr);
              double gap = rand.nextDouble();
              values[attr.index()] = (long) (instanceI.value(attr) + gap * dif);
            } else {
              int[] valueCounts = new int[attr.numValues()];
              int iVal = (int) instanceI.value(attr);
              valueCounts[iVal]++;
              for (int nnEx = 0; nnEx < nearestNeighbors; nnEx++) {
                int val = (int) nnArray[nnEx].value(attr);
                valueCounts[val]++;
              }
              int maxIndex = 0;
              int max = Integer.MIN_VALUE;
              for (int index = 0; index < attr.numValues(); index++) {
                if (valueCounts[index] > max) {
                  max = valueCounts[index];
                  maxIndex = index;
                }
              }
              values[attr.index()] = maxIndex;
            }
          }
        }
        values[sample.classIndex()] = minIndex;
        Instance synthetic = new Instance(1.0, values);
        push(synthetic);
        n--;
      }
    }
  }
Esempio n. 14
0
  /**
   * Generates the classifier.
   *
   * @param instances set of instances serving as training data
   * @exception Exception if the classifier has not been generated successfully
   */
  @Override
  public void buildClassifier(Instances instances) throws Exception {

    int attIndex = 0;
    double sum;

    // can classifier handle the data?
    getCapabilities().testWithFail(instances);

    // remove instances with missing class
    instances = new Instances(instances);
    instances.deleteWithMissingClass();

    m_Instances = new Instances(instances, 0);

    // Reserve space
    m_Counts = new double[instances.numClasses()][instances.numAttributes() - 1][0];
    m_Means = new double[instances.numClasses()][instances.numAttributes() - 1];
    m_Devs = new double[instances.numClasses()][instances.numAttributes() - 1];
    m_Priors = new double[instances.numClasses()];
    Enumeration<Attribute> enu = instances.enumerateAttributes();
    while (enu.hasMoreElements()) {
      Attribute attribute = enu.nextElement();
      if (attribute.isNominal()) {
        for (int j = 0; j < instances.numClasses(); j++) {
          m_Counts[j][attIndex] = new double[attribute.numValues()];
        }
      } else {
        for (int j = 0; j < instances.numClasses(); j++) {
          m_Counts[j][attIndex] = new double[1];
        }
      }
      attIndex++;
    }

    // Compute counts and sums
    Enumeration<Instance> enumInsts = instances.enumerateInstances();
    while (enumInsts.hasMoreElements()) {
      Instance instance = enumInsts.nextElement();
      if (!instance.classIsMissing()) {
        Enumeration<Attribute> enumAtts = instances.enumerateAttributes();
        attIndex = 0;
        while (enumAtts.hasMoreElements()) {
          Attribute attribute = enumAtts.nextElement();
          if (!instance.isMissing(attribute)) {
            if (attribute.isNominal()) {
              m_Counts[(int) instance.classValue()][attIndex][(int) instance.value(attribute)]++;
            } else {
              m_Means[(int) instance.classValue()][attIndex] += instance.value(attribute);
              m_Counts[(int) instance.classValue()][attIndex][0]++;
            }
          }
          attIndex++;
        }
        m_Priors[(int) instance.classValue()]++;
      }
    }

    // Compute means
    Enumeration<Attribute> enumAtts = instances.enumerateAttributes();
    attIndex = 0;
    while (enumAtts.hasMoreElements()) {
      Attribute attribute = enumAtts.nextElement();
      if (attribute.isNumeric()) {
        for (int j = 0; j < instances.numClasses(); j++) {
          if (m_Counts[j][attIndex][0] < 2) {
            throw new Exception(
                "attribute "
                    + attribute.name()
                    + ": less than two values for class "
                    + instances.classAttribute().value(j));
          }
          m_Means[j][attIndex] /= m_Counts[j][attIndex][0];
        }
      }
      attIndex++;
    }

    // Compute standard deviations
    enumInsts = instances.enumerateInstances();
    while (enumInsts.hasMoreElements()) {
      Instance instance = enumInsts.nextElement();
      if (!instance.classIsMissing()) {
        enumAtts = instances.enumerateAttributes();
        attIndex = 0;
        while (enumAtts.hasMoreElements()) {
          Attribute attribute = enumAtts.nextElement();
          if (!instance.isMissing(attribute)) {
            if (attribute.isNumeric()) {
              m_Devs[(int) instance.classValue()][attIndex] +=
                  (m_Means[(int) instance.classValue()][attIndex] - instance.value(attribute))
                      * (m_Means[(int) instance.classValue()][attIndex]
                          - instance.value(attribute));
            }
          }
          attIndex++;
        }
      }
    }
    enumAtts = instances.enumerateAttributes();
    attIndex = 0;
    while (enumAtts.hasMoreElements()) {
      Attribute attribute = enumAtts.nextElement();
      if (attribute.isNumeric()) {
        for (int j = 0; j < instances.numClasses(); j++) {
          if (m_Devs[j][attIndex] <= 0) {
            throw new Exception(
                "attribute "
                    + attribute.name()
                    + ": standard deviation is 0 for class "
                    + instances.classAttribute().value(j));
          } else {
            m_Devs[j][attIndex] /= m_Counts[j][attIndex][0] - 1;
            m_Devs[j][attIndex] = Math.sqrt(m_Devs[j][attIndex]);
          }
        }
      }
      attIndex++;
    }

    // Normalize counts
    enumAtts = instances.enumerateAttributes();
    attIndex = 0;
    while (enumAtts.hasMoreElements()) {
      Attribute attribute = enumAtts.nextElement();
      if (attribute.isNominal()) {
        for (int j = 0; j < instances.numClasses(); j++) {
          sum = Utils.sum(m_Counts[j][attIndex]);
          for (int i = 0; i < attribute.numValues(); i++) {
            m_Counts[j][attIndex][i] =
                (m_Counts[j][attIndex][i] + 1) / (sum + attribute.numValues());
          }
        }
      }
      attIndex++;
    }

    // Normalize priors
    sum = Utils.sum(m_Priors);
    for (int j = 0; j < instances.numClasses(); j++) {
      m_Priors[j] = (m_Priors[j] + 1) / (sum + instances.numClasses());
    }
  }
Esempio n. 15
0
    @Override
    public void init(Instances structure, Environment env) {
      super.init(structure, env);

      m_resolvedLhsName = m_lhsAttributeName;
      m_resolvedRhsOperand = m_rhsOperand;
      try {
        m_resolvedLhsName = m_env.substitute(m_resolvedLhsName);
        m_resolvedRhsOperand = m_env.substitute(m_resolvedRhsOperand);
      } catch (Exception ex) {
      }

      Attribute lhs = null;
      // try as an index or "special" label first
      if (m_resolvedLhsName.toLowerCase().startsWith("/first")) {
        lhs = structure.attribute(0);
      } else if (m_resolvedLhsName.toLowerCase().startsWith("/last")) {
        lhs = structure.attribute(structure.numAttributes() - 1);
      } else {
        // try as an index
        try {
          int indx = Integer.parseInt(m_resolvedLhsName);
          indx--;
          lhs = structure.attribute(indx);
        } catch (NumberFormatException ex) {
        }
      }

      if (lhs == null) {
        lhs = structure.attribute(m_resolvedLhsName);
      }
      if (lhs == null) {
        throw new IllegalArgumentException(
            "Data does not contain attribute " + "\"" + m_resolvedLhsName + "\"");
      }
      m_lhsAttIndex = lhs.index();

      if (m_rhsIsAttribute) {
        Attribute rhs = null;

        // try as an index or "special" label first
        if (m_resolvedRhsOperand.toLowerCase().equals("/first")) {
          rhs = structure.attribute(0);
        } else if (m_resolvedRhsOperand.toLowerCase().equals("/last")) {
          rhs = structure.attribute(structure.numAttributes() - 1);
        } else {
          // try as an index
          try {
            int indx = Integer.parseInt(m_resolvedRhsOperand);
            indx--;
            rhs = structure.attribute(indx);
          } catch (NumberFormatException ex) {
          }
        }

        if (rhs == null) {
          rhs = structure.attribute(m_resolvedRhsOperand);
        }
        if (rhs == null) {
          throw new IllegalArgumentException(
              "Data does not contain attribute " + "\"" + m_resolvedRhsOperand + "\"");
        }
        m_rhsAttIndex = rhs.index();
      } else if (m_operator != ExpressionType.CONTAINS
          && m_operator != ExpressionType.STARTSWITH
          && m_operator != ExpressionType.ENDSWITH
          && m_operator != ExpressionType.REGEX
          && m_operator != ExpressionType.ISMISSING) {
        // make sure the operand is parseable as a number (unless missing has
        // been specified - equals only)
        if (lhs.isNominal()) {
          m_numericOperand = lhs.indexOfValue(m_resolvedRhsOperand);

          if (m_numericOperand < 0) {
            throw new IllegalArgumentException(
                "Unknown nominal value '"
                    + m_resolvedRhsOperand
                    + "' for attribute '"
                    + lhs.name()
                    + "'");
          }
        } else {
          try {
            m_numericOperand = Double.parseDouble(m_resolvedRhsOperand);
          } catch (NumberFormatException e) {
            throw new IllegalArgumentException(
                "\"" + m_resolvedRhsOperand + "\" is not parseable as a number!");
          }
        }
      }

      if (m_operator == ExpressionType.REGEX) {
        m_regexPattern = Pattern.compile(m_resolvedRhsOperand);
      }
    }
Esempio n. 16
0
  /** Set the output format if the class is numeric. */
  private void setOutputFormatNumeric() {

    if (m_Indices == null) {
      setOutputFormat(null);
      return;
    }
    ArrayList<Attribute> newAtts;
    int newClassIndex;
    StringBuffer attributeName;
    Instances outputFormat;
    ArrayList<String> vals;

    // Compute new attributes

    m_needToTransform = false;
    for (int i = 0; i < getInputFormat().numAttributes(); i++) {
      Attribute att = getInputFormat().attribute(i);
      if (att.isNominal() && (att.numValues() > 2 || m_Numeric || m_TransformAll)) {
        m_needToTransform = true;
        break;
      }
    }

    if (!m_needToTransform) {
      setOutputFormat(getInputFormat());
      return;
    }

    newClassIndex = getInputFormat().classIndex();
    newAtts = new ArrayList<Attribute>();
    for (int j = 0; j < getInputFormat().numAttributes(); j++) {
      Attribute att = getInputFormat().attribute(j);
      if ((!att.isNominal()) || (j == getInputFormat().classIndex())) {
        newAtts.add((Attribute) att.copy());
      } else {
        if (j < getInputFormat().classIndex()) {
          newClassIndex += att.numValues() - 2;
        }

        // Compute values for new attributes

        for (int k = 1; k < att.numValues(); k++) {
          attributeName = new StringBuffer(att.name() + "=");
          for (int l = k; l < att.numValues(); l++) {
            if (l > k) {
              attributeName.append(',');
            }
            attributeName.append(att.value(m_Indices[j][l]));
          }
          if (m_Numeric) {
            newAtts.add(new Attribute(attributeName.toString()));
          } else {
            vals = new ArrayList<String>(2);
            vals.add("f");
            vals.add("t");
            newAtts.add(new Attribute(attributeName.toString(), vals));
          }
        }
      }
    }
    outputFormat = new Instances(getInputFormat().relationName(), newAtts, 0);
    outputFormat.setClassIndex(newClassIndex);
    setOutputFormat(outputFormat);
  }
Esempio n. 17
0
  public MappingInfo(Instances dataSet, MiningSchema miningSchema, Logger log) throws Exception {
    m_log = log;
    // miningSchema.convertStringAttsToNominal();
    Instances fieldsI = miningSchema.getMiningSchemaAsInstances();

    m_fieldsMap = new int[fieldsI.numAttributes()];
    m_nominalValueMaps = new int[fieldsI.numAttributes()][];

    for (int i = 0; i < fieldsI.numAttributes(); i++) {
      String schemaAttName = fieldsI.attribute(i).name();
      boolean found = false;
      for (int j = 0; j < dataSet.numAttributes(); j++) {
        if (dataSet.attribute(j).name().equals(schemaAttName)) {
          Attribute miningSchemaAtt = fieldsI.attribute(i);
          Attribute incomingAtt = dataSet.attribute(j);
          // check type match
          if (miningSchemaAtt.type() != incomingAtt.type()) {
            throw new Exception(
                "[MappingInfo] type mismatch for field "
                    + schemaAttName
                    + ". Mining schema type "
                    + miningSchemaAtt.toString()
                    + ". Incoming type "
                    + incomingAtt.toString()
                    + ".");
          }

          // check nominal values (number, names...)
          if (miningSchemaAtt.numValues() != incomingAtt.numValues()) {
            String warningString =
                "[MappingInfo] WARNING: incoming nominal attribute "
                    + incomingAtt.name()
                    + " does not have the same "
                    + "number of values as the corresponding mining "
                    + "schema attribute.";
            if (m_log != null) {
              m_log.logMessage(warningString);
            } else {
              System.err.println(warningString);
            }
          }
          if (miningSchemaAtt.isNominal() || miningSchemaAtt.isString()) {
            int[] valuesMap = new int[incomingAtt.numValues()];
            for (int k = 0; k < incomingAtt.numValues(); k++) {
              String incomingNomVal = incomingAtt.value(k);
              int indexInSchema = miningSchemaAtt.indexOfValue(incomingNomVal);
              if (indexInSchema < 0) {
                String warningString =
                    "[MappingInfo] WARNING: incoming nominal attribute "
                        + incomingAtt.name()
                        + " has value "
                        + incomingNomVal
                        + " that doesn't occur in the mining schema.";
                if (m_log != null) {
                  m_log.logMessage(warningString);
                } else {
                  System.err.println(warningString);
                }
                valuesMap[k] = UNKNOWN_NOMINAL_VALUE;
              } else {
                valuesMap[k] = indexInSchema;
              }
            }
            m_nominalValueMaps[i] = valuesMap;
          }

          /*if (miningSchemaAtt.isNominal()) {
            for (int k = 0; k < miningSchemaAtt.numValues(); k++) {
              if (!miningSchemaAtt.value(k).equals(incomingAtt.value(k))) {
                throw new Exception("[PMMLUtils] value " + k + " (" +
                                    miningSchemaAtt.value(k) + ") does not match " +
                                    "incoming value (" + incomingAtt.value(k) +
                                    ") for attribute " + miningSchemaAtt.name() +
                                    ".");

              }
            }
          }*/
          found = true;
          m_fieldsMap[i] = j;
        }
      }
      if (!found) {
        throw new Exception(
            "[MappingInfo] Unable to find a match for mining schema "
                + "attribute "
                + schemaAttName
                + " in the "
                + "incoming instances!");
      }
    }

    // check class attribute (if set)
    if (fieldsI.classIndex() >= 0) {
      if (dataSet.classIndex() < 0) {
        // first see if we can find a matching class
        String className = fieldsI.classAttribute().name();
        Attribute classMatch = dataSet.attribute(className);
        if (classMatch == null) {
          throw new Exception(
              "[MappingInfo] Can't find match for target field "
                  + className
                  + "in incoming instances!");
        }
        dataSet.setClass(classMatch);
      } else if (!fieldsI.classAttribute().name().equals(dataSet.classAttribute().name())) {
        throw new Exception(
            "[MappingInfo] class attribute in mining schema does not match "
                + "class attribute in incoming instances!");
      }
    }

    // Set up the textual description of the mapping
    fieldsMappingString(fieldsI, dataSet);
  }