/** * Train a Deep Learning model, assumes that all members are populated If checkpoint == null, * then start training a new model, otherwise continue from a checkpoint */ public final void buildModel() { DeepLearningModel cp = null; if (_parms._checkpoint == null) { cp = new DeepLearningModel( dest(), _parms, new DeepLearningModel.DeepLearningModelOutput(DeepLearning.this), _train, _valid, nclasses()); cp.model_info().initializeMembers(); } else { final DeepLearningModel previous = DKV.getGet(_parms._checkpoint); if (previous == null) throw new IllegalArgumentException("Checkpoint not found."); Log.info("Resuming from checkpoint."); _job.update(0, "Resuming from checkpoint"); if (isClassifier() != previous._output.isClassifier()) throw new H2OIllegalArgumentException( "Response type must be the same as for the checkpointed model."); if (isSupervised() != previous._output.isSupervised()) throw new H2OIllegalArgumentException( "Model type must be the same as for the checkpointed model."); // check the user-given arguments for consistency DeepLearningParameters oldP = previous._parms; // sanitized parameters for checkpointed model DeepLearningParameters newP = _parms; // user-given parameters for restart DeepLearningParameters oldP2 = (DeepLearningParameters) oldP.clone(); DeepLearningParameters newP2 = (DeepLearningParameters) newP.clone(); DeepLearningParameters.Sanity.modifyParms( oldP, oldP2, nclasses()); // sanitize the user-given parameters DeepLearningParameters.Sanity.modifyParms( newP, newP2, nclasses()); // sanitize the user-given parameters DeepLearningParameters.Sanity.checkpoint(oldP2, newP2); DataInfo dinfo; try { // PUBDEV-2513: Adapt _train and _valid (in-place) to match the frames that were used for // the previous model // This can add or remove dummy columns (can happen if the dataset is sparse and datasets // have different non-const columns) for (String st : previous.adaptTestForTrain(_train, true, false)) Log.warn(st); for (String st : previous.adaptTestForTrain(_valid, true, false)) Log.warn(st); dinfo = makeDataInfo(_train, _valid, _parms, nclasses()); DKV.put(dinfo); cp = new DeepLearningModel(dest(), _parms, previous, false, dinfo); cp.write_lock(_job); if (!Arrays.equals(cp._output._names, previous._output._names)) { throw new H2OIllegalArgumentException( "The columns of the training data must be the same as for the checkpointed model. Check ignored columns (or disable ignore_const_cols)."); } if (!Arrays.deepEquals(cp._output._domains, previous._output._domains)) { throw new H2OIllegalArgumentException( "Categorical factor levels of the training data must be the same as for the checkpointed model."); } if (dinfo.fullN() != previous.model_info().data_info().fullN()) { throw new H2OIllegalArgumentException( "Total number of predictors is different than for the checkpointed model."); } if (_parms._epochs <= previous.epoch_counter) { throw new H2OIllegalArgumentException( "Total number of epochs must be larger than the number of epochs already trained for the checkpointed model (" + previous.epoch_counter + ")."); } // these are the mutable parameters that are to be used by the model (stored in // model_info._parms) final DeepLearningParameters actualNewP = cp.model_info() .get_params(); // actually used parameters for model building (defaults filled in, // etc.) assert (actualNewP != previous.model_info().get_params()); assert (actualNewP != newP); assert (actualNewP != oldP); DeepLearningParameters.Sanity.update(actualNewP, newP, nclasses()); Log.info( "Continuing training after " + String.format("%.3f", previous.epoch_counter) + " epochs from the checkpointed model."); cp.update(_job); } catch (H2OIllegalArgumentException ex) { if (cp != null) { cp.unlock(_job); cp.delete(); cp = null; } throw ex; } finally { if (cp != null) cp.unlock(_job); } } trainModel(cp); // clean up, but don't delete weights and biases if user asked for export List<Key> keep = new ArrayList<>(); try { if (_parms._export_weights_and_biases && cp._output.weights != null && cp._output.biases != null) { for (Key k : Arrays.asList(cp._output.weights)) { keep.add(k); for (Vec vk : ((Frame) DKV.getGet(k)).vecs()) { keep.add(vk._key); } } for (Key k : Arrays.asList(cp._output.biases)) { keep.add(k); for (Vec vk : ((Frame) DKV.getGet(k)).vecs()) { keep.add(vk._key); } } } } finally { Scope.exit(keep.toArray(new Key[keep.size()])); } }
@Override Val apply(Env env, Env.StackHelp stk, AST asts[]) { // Execute all args. Find a canonical frame; all Frames must look like this one. // Each argument turns into either a Frame (whose rows are entirely // inlined) or a scalar (which is replicated across as a single row). Frame fr = null; // Canonical Frame; all frames have the same column count, types and names int nchks = 0; // Total chunks Val vals[] = new Val[asts.length]; // Computed AST results for (int i = 1; i < asts.length; i++) { vals[i] = stk.track(asts[i].exec(env)); if (vals[i].isFrame()) { fr = vals[i].getFrame(); nchks += fr.anyVec().nChunks(); // Total chunks } else nchks++; // One chunk per scalar } // No Frame, just a pile-o-scalars? Vec zz = null; // The zero-length vec for the zero-frame frame if (fr == null) { // Zero-length, 1-column, default name fr = new Frame(new String[] {Frame.defaultColName(0)}, new Vec[] {zz = Vec.makeZero(0)}); if (asts.length == 1) return new ValFrame(fr); } // Verify all Frames are the same columns, names, and types. Domains can vary, and will be the // union final Frame frs[] = new Frame[asts.length]; // Input frame final byte[] types = fr.types(); // Column types final int ncols = fr.numCols(); final long[] espc = new long[nchks + 1]; // Compute a new layout! int coffset = 0; for (int i = 1; i < asts.length; i++) { Val val = vals[i]; // Save values computed for pass 2 Frame fr0 = val.isFrame() ? val.getFrame() // Scalar: auto-expand into a 1-row frame : stk.track(new Frame(fr._names, Vec.makeCons(val.getNum(), 1L, fr.numCols()))); // Check that all frames are compatible if (fr.numCols() != fr0.numCols()) throw new IllegalArgumentException( "rbind frames must have all the same columns, found " + fr.numCols() + " and " + fr0.numCols() + " columns."); if (!Arrays.deepEquals(fr._names, fr0._names)) throw new IllegalArgumentException( "rbind frames must have all the same column names, found " + Arrays.toString(fr._names) + " and " + Arrays.toString(fr0._names)); if (!Arrays.equals(types, fr0.types())) throw new IllegalArgumentException( "rbind frames must have all the same column types, found " + Arrays.toString(types) + " and " + Arrays.toString(fr0.types())); frs[i] = fr0; // Save frame // Roll up the ESPC row counts long roffset = espc[coffset]; long[] espc2 = fr0.anyVec().espc(); for (int j = 1; j < espc2.length; j++) // Roll up the row counts espc[coffset + j] = (roffset + espc2[j]); coffset += espc2.length - 1; // Chunk offset } if (zz != null) zz.remove(); // build up the new domains for each vec HashMap<String, Integer>[] dmap = new HashMap[types.length]; String[][] domains = new String[types.length][]; int[][][] cmaps = new int[types.length][][]; for (int k = 0; k < types.length; ++k) { dmap[k] = new HashMap<>(); int c = 0; byte t = types[k]; if (t == Vec.T_CAT) { int[][] maps = new int[frs.length][]; for (int i = 1; i < frs.length; i++) { maps[i] = new int[frs[i].vec(k).domain().length]; for (int j = 0; j < maps[i].length; j++) { String s = frs[i].vec(k).domain()[j]; if (!dmap[k].containsKey(s)) dmap[k].put(s, maps[i][j] = c++); else maps[i][j] = dmap[k].get(s); } } cmaps[k] = maps; } else { cmaps[k] = new int[frs.length][]; } domains[k] = c == 0 ? null : new String[c]; for (Map.Entry<String, Integer> e : dmap[k].entrySet()) domains[k][e.getValue()] = e.getKey(); } // Now make Keys for the new Vecs Key<Vec>[] keys = fr.anyVec().group().addVecs(fr.numCols()); Vec[] vecs = new Vec[fr.numCols()]; int rowLayout = Vec.ESPC.rowLayout(keys[0], espc); for (int i = 0; i < vecs.length; i++) vecs[i] = new Vec(keys[i], rowLayout, domains[i], types[i]); // Do the row-binds column-by-column. // Switch to F/J thread for continuations ParallelRbinds t; H2O.submitTask(t = new ParallelRbinds(frs, espc, vecs, cmaps)).join(); return new ValFrame(new Frame(fr.names(), t._vecs)); }