/** Initializes the members. */ protected void initialize() { super.initialize(); m_PlotShapes = new FastVector(); m_PlotSizes = new FastVector(); m_Classifier = null; m_ClassIndex = -1; m_Evaluation = null; m_SaveForVisualization = true; m_MinimumPlotSizeNumeric = ExplorerDefaults.getClassifierErrorsMinimumPlotSizeNumeric(); m_MaximumPlotSizeNumeric = ExplorerDefaults.getClassifierErrorsMaximumPlotSizeNumeric(); }
/** * Accept a classifier to be evaluated. * * @param ce a <code>BatchClassifierEvent</code> value */ public void acceptClassifier(BatchClassifierEvent ce) { if (ce.getTestSet() == null || ce.getTestSet().isStructureOnly()) { return; // can't evaluate empty/non-existent test instances } Classifier classifier = ce.getClassifier(); try { if (ce.getGroupIdentifier() != m_currentBatchIdentifier) { if (m_setsComplete > 0) { if (m_logger != null) { m_logger.statusMessage( statusMessagePrefix() + "BUSY. Can't accept data " + "at this time."); m_logger.logMessage( "[ClassifierPerformanceEvaluator] " + statusMessagePrefix() + " BUSY. Can't accept data at this time."); } return; } if (ce.getTrainSet().getDataSet() == null || ce.getTrainSet().getDataSet().numInstances() == 0) { // we have no training set to estimate majority class // or mean of target from Evaluation eval = new Evaluation(ce.getTestSet().getDataSet()); m_PlotInstances = ExplorerDefaults.getClassifierErrorsPlotInstances(); m_PlotInstances.setInstances(ce.getTestSet().getDataSet()); m_PlotInstances.setClassifier(ce.getClassifier()); m_PlotInstances.setClassIndex(ce.getTestSet().getDataSet().classIndex()); m_PlotInstances.setEvaluation(eval); eval = adjustForInputMappedClassifier( eval, ce.getClassifier(), ce.getTestSet().getDataSet(), m_PlotInstances); eval.useNoPriors(); m_eval = new AggregateableEvaluation(eval); } else { // we can set up with the training set here Evaluation eval = new Evaluation(ce.getTrainSet().getDataSet()); m_PlotInstances = ExplorerDefaults.getClassifierErrorsPlotInstances(); m_PlotInstances.setInstances(ce.getTrainSet().getDataSet()); m_PlotInstances.setClassifier(ce.getClassifier()); m_PlotInstances.setClassIndex(ce.getTestSet().getDataSet().classIndex()); m_PlotInstances.setEvaluation(eval); eval = adjustForInputMappedClassifier( eval, ce.getClassifier(), ce.getTrainSet().getDataSet(), m_PlotInstances); m_eval = new AggregateableEvaluation(eval); } m_PlotInstances.setUp(); m_currentBatchIdentifier = ce.getGroupIdentifier(); m_setsComplete = 0; m_aggregatedPlotInstances = null; String msg = "[ClassifierPerformanceEvaluator] " + statusMessagePrefix() + " starting executor pool (" + getExecutionSlots() + " slots)..."; // start the execution pool if (m_executorPool == null) { startExecutorPool(); } m_tasks = new ArrayList<EvaluationTask>(); if (m_logger != null) { m_logger.logMessage(msg); } else { System.out.println(msg); } } // if m_tasks == null then we've been stopped if (m_setsComplete < ce.getMaxSetNumber() && m_tasks != null) { EvaluationTask newTask = new EvaluationTask( classifier, ce.getTrainSet().getDataSet(), ce.getTestSet().getDataSet(), ce.getSetNumber(), ce.getMaxSetNumber()); String msg = "[ClassifierPerformanceEvaluator] " + statusMessagePrefix() + " scheduling " + " evaluation of fold " + ce.getSetNumber() + " for execution..."; if (m_logger != null) { m_logger.logMessage(msg); } else { System.out.println(msg); } m_tasks.add(newTask); m_executorPool.execute(newTask); } } catch (Exception ex) { // stop everything stop(); } }
public void execute() { if (m_stopped) { return; } if (m_logger != null) { m_logger.statusMessage(statusMessagePrefix() + "Evaluating (" + m_setNum + ")..."); m_visual.setAnimated(); } try { ClassifierErrorsPlotInstances plotInstances = ExplorerDefaults.getClassifierErrorsPlotInstances(); Evaluation eval = null; if (m_trainData == null || m_trainData.numInstances() == 0) { eval = new Evaluation(m_testData); plotInstances.setInstances(m_testData); plotInstances.setClassifier(m_classifier); plotInstances.setClassIndex(m_testData.classIndex()); plotInstances.setEvaluation(eval); eval = adjustForInputMappedClassifier(eval, m_classifier, m_testData, plotInstances); eval.useNoPriors(); } else { eval = new Evaluation(m_trainData); plotInstances.setInstances(m_trainData); plotInstances.setClassifier(m_classifier); plotInstances.setClassIndex(m_trainData.classIndex()); plotInstances.setEvaluation(eval); eval = adjustForInputMappedClassifier(eval, m_classifier, m_trainData, plotInstances); } plotInstances.setUp(); for (int i = 0; i < m_testData.numInstances(); i++) { if (m_stopped) { break; } Instance temp = m_testData.instance(i); plotInstances.process(temp, m_classifier, eval); } if (m_stopped) { return; } aggregateEvalTask(eval, m_classifier, m_testData, plotInstances, m_setNum, m_maxSetNum); } catch (Exception ex) { ClassifierPerformanceEvaluator.this.stop(); // stop all processing if (m_logger != null) { m_logger.logMessage( "[ClassifierPerformanceEvaluator] " + statusMessagePrefix() + " problem evaluating classifier. " + ex.getMessage()); } ex.printStackTrace(); } }