/** Initializes the members. */
  protected void initialize() {
    super.initialize();

    m_PlotShapes = new FastVector();
    m_PlotSizes = new FastVector();
    m_Classifier = null;
    m_ClassIndex = -1;
    m_Evaluation = null;
    m_SaveForVisualization = true;
    m_MinimumPlotSizeNumeric = ExplorerDefaults.getClassifierErrorsMinimumPlotSizeNumeric();
    m_MaximumPlotSizeNumeric = ExplorerDefaults.getClassifierErrorsMaximumPlotSizeNumeric();
  }
  /**
   * Accept a classifier to be evaluated.
   *
   * @param ce a <code>BatchClassifierEvent</code> value
   */
  public void acceptClassifier(BatchClassifierEvent ce) {
    if (ce.getTestSet() == null || ce.getTestSet().isStructureOnly()) {
      return; // can't evaluate empty/non-existent test instances
    }

    Classifier classifier = ce.getClassifier();

    try {
      if (ce.getGroupIdentifier() != m_currentBatchIdentifier) {
        if (m_setsComplete > 0) {
          if (m_logger != null) {
            m_logger.statusMessage(
                statusMessagePrefix() + "BUSY. Can't accept data " + "at this time.");
            m_logger.logMessage(
                "[ClassifierPerformanceEvaluator] "
                    + statusMessagePrefix()
                    + " BUSY. Can't accept data at this time.");
          }
          return;
        }
        if (ce.getTrainSet().getDataSet() == null
            || ce.getTrainSet().getDataSet().numInstances() == 0) {
          // we have no training set to estimate majority class
          // or mean of target from
          Evaluation eval = new Evaluation(ce.getTestSet().getDataSet());
          m_PlotInstances = ExplorerDefaults.getClassifierErrorsPlotInstances();
          m_PlotInstances.setInstances(ce.getTestSet().getDataSet());
          m_PlotInstances.setClassifier(ce.getClassifier());
          m_PlotInstances.setClassIndex(ce.getTestSet().getDataSet().classIndex());
          m_PlotInstances.setEvaluation(eval);

          eval =
              adjustForInputMappedClassifier(
                  eval, ce.getClassifier(), ce.getTestSet().getDataSet(), m_PlotInstances);
          eval.useNoPriors();
          m_eval = new AggregateableEvaluation(eval);
        } else {
          // we can set up with the training set here
          Evaluation eval = new Evaluation(ce.getTrainSet().getDataSet());
          m_PlotInstances = ExplorerDefaults.getClassifierErrorsPlotInstances();
          m_PlotInstances.setInstances(ce.getTrainSet().getDataSet());
          m_PlotInstances.setClassifier(ce.getClassifier());
          m_PlotInstances.setClassIndex(ce.getTestSet().getDataSet().classIndex());
          m_PlotInstances.setEvaluation(eval);

          eval =
              adjustForInputMappedClassifier(
                  eval, ce.getClassifier(), ce.getTrainSet().getDataSet(), m_PlotInstances);
          m_eval = new AggregateableEvaluation(eval);
        }

        m_PlotInstances.setUp();

        m_currentBatchIdentifier = ce.getGroupIdentifier();
        m_setsComplete = 0;

        m_aggregatedPlotInstances = null;

        String msg =
            "[ClassifierPerformanceEvaluator] "
                + statusMessagePrefix()
                + " starting executor pool ("
                + getExecutionSlots()
                + " slots)...";
        // start the execution pool
        if (m_executorPool == null) {
          startExecutorPool();
        }
        m_tasks = new ArrayList<EvaluationTask>();

        if (m_logger != null) {
          m_logger.logMessage(msg);
        } else {
          System.out.println(msg);
        }
      }

      // if m_tasks == null then we've been stopped
      if (m_setsComplete < ce.getMaxSetNumber() && m_tasks != null) {
        EvaluationTask newTask =
            new EvaluationTask(
                classifier,
                ce.getTrainSet().getDataSet(),
                ce.getTestSet().getDataSet(),
                ce.getSetNumber(),
                ce.getMaxSetNumber());
        String msg =
            "[ClassifierPerformanceEvaluator] "
                + statusMessagePrefix()
                + " scheduling "
                + " evaluation of fold "
                + ce.getSetNumber()
                + " for execution...";
        if (m_logger != null) {
          m_logger.logMessage(msg);
        } else {
          System.out.println(msg);
        }
        m_tasks.add(newTask);
        m_executorPool.execute(newTask);
      }
    } catch (Exception ex) {
      // stop everything
      stop();
    }
  }
    public void execute() {
      if (m_stopped) {
        return;
      }

      if (m_logger != null) {
        m_logger.statusMessage(statusMessagePrefix() + "Evaluating (" + m_setNum + ")...");
        m_visual.setAnimated();
      }
      try {

        ClassifierErrorsPlotInstances plotInstances =
            ExplorerDefaults.getClassifierErrorsPlotInstances();
        Evaluation eval = null;

        if (m_trainData == null || m_trainData.numInstances() == 0) {
          eval = new Evaluation(m_testData);
          plotInstances.setInstances(m_testData);
          plotInstances.setClassifier(m_classifier);
          plotInstances.setClassIndex(m_testData.classIndex());
          plotInstances.setEvaluation(eval);
          eval = adjustForInputMappedClassifier(eval, m_classifier, m_testData, plotInstances);

          eval.useNoPriors();
        } else {
          eval = new Evaluation(m_trainData);
          plotInstances.setInstances(m_trainData);
          plotInstances.setClassifier(m_classifier);
          plotInstances.setClassIndex(m_trainData.classIndex());
          plotInstances.setEvaluation(eval);
          eval = adjustForInputMappedClassifier(eval, m_classifier, m_trainData, plotInstances);
        }

        plotInstances.setUp();

        for (int i = 0; i < m_testData.numInstances(); i++) {
          if (m_stopped) {
            break;
          }
          Instance temp = m_testData.instance(i);
          plotInstances.process(temp, m_classifier, eval);
        }

        if (m_stopped) {
          return;
        }

        aggregateEvalTask(eval, m_classifier, m_testData, plotInstances, m_setNum, m_maxSetNum);

      } catch (Exception ex) {
        ClassifierPerformanceEvaluator.this.stop(); // stop all processing
        if (m_logger != null) {
          m_logger.logMessage(
              "[ClassifierPerformanceEvaluator] "
                  + statusMessagePrefix()
                  + " problem evaluating classifier. "
                  + ex.getMessage());
        }
        ex.printStackTrace();
      }
    }