Exemple #1
0
 private static void addFolder(FileSystem fs, Path p, JsonArray succeeded, JsonArray failed) {
   try {
     if (fs == null) return;
     for (FileStatus file : fs.listStatus(p)) {
       Path pfs = file.getPath();
       if (file.isDir()) {
         addFolder(fs, pfs, succeeded, failed);
       } else {
         Key k = Key.make(pfs.toString());
         long size = file.getLen();
         Value val = null;
         if (pfs.getName().endsWith(Extensions.JSON)) {
           JsonParser parser = new JsonParser();
           JsonObject json = parser.parse(new InputStreamReader(fs.open(pfs))).getAsJsonObject();
           JsonElement v = json.get(Constants.VERSION);
           if (v == null) throw new RuntimeException("Missing version");
           JsonElement type = json.get(Constants.TYPE);
           if (type == null) throw new RuntimeException("Missing type");
           Class c = Class.forName(type.getAsString());
           OldModel model = (OldModel) c.newInstance();
           model.fromJson(json);
         } else if (pfs.getName().endsWith(Extensions.HEX)) { // Hex file?
           FSDataInputStream s = fs.open(pfs);
           int sz = (int) Math.min(1L << 20, size); // Read up to the 1st meg
           byte[] mem = MemoryManager.malloc1(sz);
           s.readFully(mem);
           // Convert to a ValueArray (hope it fits in 1Meg!)
           ValueArray ary = new ValueArray(k, 0).read(new AutoBuffer(mem));
           val = new Value(k, ary, Value.HDFS);
         } else if (size >= 2 * ValueArray.CHUNK_SZ) {
           val =
               new Value(
                   k,
                   new ValueArray(k, size),
                   Value.HDFS); // ValueArray byte wrapper over a large file
         } else {
           val = new Value(k, (int) size, Value.HDFS); // Plain Value
           val.setdsk();
         }
         DKV.put(k, val);
         Log.info("PersistHdfs: DKV.put(" + k + ")");
         JsonObject o = new JsonObject();
         o.addProperty(Constants.KEY, k.toString());
         o.addProperty(Constants.FILE, pfs.toString());
         o.addProperty(Constants.VALUE_SIZE, file.getLen());
         succeeded.add(o);
       }
     }
   } catch (Exception e) {
     Log.err(e);
     JsonObject o = new JsonObject();
     o.addProperty(Constants.FILE, p.toString());
     o.addProperty(Constants.ERROR, e.getMessage());
     failed.add(o);
   }
 }
Exemple #2
0
    TotSS(double[] means, double[] mults, int[] modes, String[][] isCats, int[] card) {
      _means = means;
      _mults = mults;
      _modes = modes;
      _tss = 0;
      _isCats = isCats;
      _card = card;

      // Mean of numeric col is zero when standardized
      _gc = mults != null ? new double[means.length] : Arrays.copyOf(means, means.length);
      for (int i = 0; i < means.length; i++) {
        if (isCats[i] != null)
          _gc[i] =
              Math.min(
                  Math.round(means[i]),
                  _card[i] - 1); // TODO: Should set to majority class of categorical column
      }
    }
  /**
   * Main constructor
   *
   * @param params Model parameters
   * @param dinfo Data Info
   * @param nClasses number of classes (1 for regression, 0 for autoencoder)
   * @param train User-given training data frame, prepared by AdaptTestTrain
   * @param valid User-specified validation data frame, prepared by AdaptTestTrain
   */
  public DeepLearningModelInfo(
      final DeepLearningParameters params,
      final DataInfo dinfo,
      int nClasses,
      Frame train,
      Frame valid) {
    _classification = nClasses > 1;
    _train = train;
    _valid = valid;
    data_info = dinfo;
    parameters =
        (DeepLearningParameters) params.clone(); // make a copy, don't change model's parameters
    DeepLearningParameters.Sanity.modifyParms(
        parameters, parameters, nClasses); // sanitize the model_info's parameters

    final int num_input = dinfo.fullN();
    final int num_output =
        get_params()._autoencoder
            ? num_input
            : (_classification ? train.lastVec().cardinality() : 1);
    if (!get_params()._autoencoder) assert (num_output == nClasses);

    _saw_missing_cats = dinfo._cats > 0 ? new boolean[data_info._cats] : null;
    assert (num_input > 0);
    assert (num_output > 0);
    if (has_momenta() && adaDelta())
      throw new IllegalArgumentException(
          "Cannot have non-zero momentum and adaptive rate at the same time.");
    final int layers = get_params()._hidden.length;
    // units (# neurons for each layer)
    units = new int[layers + 2];
    if (get_params()._max_categorical_features <= Integer.MAX_VALUE - dinfo._nums)
      units[0] = Math.min(dinfo._nums + get_params()._max_categorical_features, num_input);
    else units[0] = num_input;
    System.arraycopy(get_params()._hidden, 0, units, 1, layers);
    units[layers + 1] = num_output;

    boolean printLevels = units[0] > 1000L;
    boolean warn = units[0] > 100000L;
    if (printLevels) {
      final String[][] domains = dinfo._adaptedFrame.domains();
      int[] levels = new int[domains.length];
      for (int i = 0; i < levels.length; ++i) {
        levels[i] = domains[i] != null ? domains[i].length : 0;
      }
      Arrays.sort(levels);
      if (warn) {
        Log.warn(
            "===================================================================================================================================");
        Log.warn(
            num_input
                + " input features"
                + (dinfo._cats > 0 ? " (after categorical one-hot encoding)" : "")
                + ". Can be slow and require a lot of memory.");
      }
      if (levels[levels.length - 1] > 0) {
        int levelcutoff = levels[levels.length - 1 - Math.min(10, levels.length - 1)];
        int count = 0;
        for (int i = 0;
            i < dinfo._adaptedFrame.numCols() - (get_params()._autoencoder ? 0 : 1) && count < 10;
            ++i) {
          if (dinfo._adaptedFrame.domains()[i] != null
              && dinfo._adaptedFrame.domains()[i].length >= levelcutoff) {
            if (warn) {
              Log.warn(
                  "Categorical feature '"
                      + dinfo._adaptedFrame._names[i]
                      + "' has cardinality "
                      + dinfo._adaptedFrame.domains()[i].length
                      + ".");
            } else {
              Log.info(
                  "Categorical feature '"
                      + dinfo._adaptedFrame._names[i]
                      + "' has cardinality "
                      + dinfo._adaptedFrame.domains()[i].length
                      + ".");
            }
          }
          count++;
        }
      }
      if (warn) {
        Log.warn("Suggestions:");
        Log.warn(" *) Limit the size of the first hidden layer");
        if (dinfo._cats > 0) {
          Log.warn(
              " *) Limit the total number of one-hot encoded features with the parameter 'max_categorical_features'");
          Log.warn(
              " *) Run h2o.interaction(...,pairwise=F) on high-cardinality categorical columns to limit the factor count, see http://learn.h2o.ai");
        }
        Log.warn(
            "===================================================================================================================================");
      }
    }

    // weights (to connect layers)
    dense_row_weights = new Storage.DenseRowMatrix[layers + 1];
    dense_col_weights = new Storage.DenseColMatrix[layers + 1];

    // decide format of weight matrices row-major or col-major
    if (get_params()._col_major)
      dense_col_weights[0] = new Storage.DenseColMatrix(units[1], units[0]);
    else dense_row_weights[0] = new Storage.DenseRowMatrix(units[1], units[0]);
    for (int i = 1; i <= layers; ++i)
      dense_row_weights[i] = new Storage.DenseRowMatrix(units[i + 1] /*rows*/, units[i] /*cols*/);

    // biases (only for hidden layers and output layer)
    biases = new Storage.DenseVector[layers + 1];
    for (int i = 0; i <= layers; ++i) biases[i] = new Storage.DenseVector(units[i + 1]);
    // average activation (only for hidden layers)
    if (get_params()._autoencoder && get_params()._sparsity_beta > 0) {
      avg_activations = new Storage.DenseVector[layers];
      mean_a = new float[layers];
      for (int i = 0; i < layers; ++i) avg_activations[i] = new Storage.DenseVector(units[i + 1]);
    }
    allocateHelperArrays();
    // for diagnostics
    mean_rate = new float[units.length];
    rms_rate = new float[units.length];
    mean_bias = new float[units.length];
    rms_bias = new float[units.length];
    mean_weight = new float[units.length];
    rms_weight = new float[units.length];
  }
Exemple #4
0
 // Progress reporting for the job/progress page
 @Override
 public float progress() {
   return Math.min(1f, _iteration / (float) _maxIter);
 }
Exemple #5
0
    // public final double[] rproxgrad_x(double[] u, double alpha) { return rproxgrad(u, alpha,
    // _gamma_x, _regularization_x, RandomUtils.getRNG(_seed)); }
    // public final double[] rproxgrad_y(double[] u, double alpha) { return rproxgrad(u, alpha,
    // _gamma_y, _regularization_y, RandomUtils.getRNG(_seed)); }
    static double[] rproxgrad(
        double[] u, double alpha, double gamma, Regularizer regularization, Random rand) {
      if (u == null || alpha == 0 || gamma == 0) return u;
      double[] v = new double[u.length];

      switch (regularization) {
        case None:
          return u;
        case Quadratic:
          for (int i = 0; i < u.length; i++) v[i] = u[i] / (1 + 2 * alpha * gamma);
          return v;
        case L2:
          // Proof uses Moreau decomposition; see section 6.5.1 of Parikh and Boyd
          // https://web.stanford.edu/~boyd/papers/pdf/prox_algs.pdf
          double weight = 1 - alpha * gamma / ArrayUtils.l2norm(u);
          if (weight < 0) return v; // Zero vector
          for (int i = 0; i < u.length; i++) v[i] = weight * u[i];
          return v;
        case L1:
          for (int i = 0; i < u.length; i++)
            v[i] = Math.max(u[i] - alpha * gamma, 0) + Math.min(u[i] + alpha * gamma, 0);
          return v;
        case NonNegative:
          for (int i = 0; i < u.length; i++) v[i] = Math.max(u[i], 0);
          return v;
        case OneSparse:
          int idx = ArrayUtils.maxIndex(u, rand);
          v[idx] = u[idx] > 0 ? u[idx] : 1e-6;
          return v;
        case UnitOneSparse:
          idx = ArrayUtils.maxIndex(u, rand);
          v[idx] = 1;
          return v;
        case Simplex:
          // Proximal gradient algorithm by Chen and Ye in http://arxiv.org/pdf/1101.6081v2.pdf
          // 1) Sort input vector u in ascending order: u[1] <= ... <= u[n]
          int n = u.length;
          int[] idxs = new int[n];
          for (int i = 0; i < n; i++) idxs[i] = i;
          ArrayUtils.sort(idxs, u);

          // 2) Calculate cumulative sum of u in descending order
          // cumsum(u) = (..., u[n-2]+u[n-1]+u[n], u[n-1]+u[n], u[n])
          double[] ucsum = new double[n];
          ucsum[n - 1] = u[idxs[n - 1]];
          for (int i = n - 2; i >= 0; i--) ucsum[i] = ucsum[i + 1] + u[idxs[i]];

          // 3) Let t_i = (\sum_{j=i+1}^n u[j] - 1)/(n - i)
          // For i = n-1,...,1, set optimal t* to first t_i >= u[i]
          double t = (ucsum[0] - 1) / n; // Default t* = (\sum_{j=1}^n u[j] - 1)/n
          for (int i = n - 1; i >= 1; i--) {
            double tmp = (ucsum[i] - 1) / (n - i);
            if (tmp >= u[idxs[i - 1]]) {
              t = tmp;
              break;
            }
          }

          // 4) Return max(u - t*, 0) as projection of u onto simplex
          double[] x = new double[u.length];
          for (int i = 0; i < u.length; i++) x[i] = Math.max(u[i] - t, 0);
          return x;
        default:
          throw new RuntimeException("Unknown regularization function " + regularization);
      }
    }
Exemple #6
0
 @Override
 public float progress() {
   if (_status == Status.Done) return 1.0f;
   return Math.min(0.99f, (float) ((double) _count / (double) _nchunks));
 }