Exemple #1
0
 public final double loss(double u, double a, Loss loss) {
   assert loss.isForNumeric() : "Loss function " + loss + " not applicable to numerics";
   switch (loss) {
     case Quadratic:
       return (u - a) * (u - a);
     case Absolute:
       return Math.abs(u - a);
     case Huber:
       return Math.abs(u - a) <= 1 ? 0.5 * (u - a) * (u - a) : Math.abs(u - a) - 0.5;
     case Poisson:
       assert a >= 0 : "Poisson loss L(u,a) requires variable a >= 0";
       return Math.exp(u)
           + (a == 0 ? 0 : -a * u + a * Math.log(a) - a); // Since \lim_{a->0} a*log(a) = 0
     case Hinge:
       // return Math.max(1-a*u,0);
       return Math.max(1 - (a == 0 ? -u : u), 0); // Booleans are coded {0,1} instead of {-1,1}
     case Logistic:
       // return Math.log(1 + Math.exp(-a * u));
       return Math.log(
           1 + Math.exp(a == 0 ? u : -u)); // Booleans are coded {0,1} instead of {-1,1}
     case Periodic:
       return 1 - Math.cos((a - u) * (2 * Math.PI) / _period);
     default:
       throw new RuntimeException("Unknown loss function " + loss);
   }
 }
  /**
   * Compute Variable Importance, based on GEDEON: DATA MINING OF INPUTS: ANALYSING MAGNITUDE AND
   * FUNCTIONAL MEASURES
   *
   * @return variable importances for input features
   */
  public float[] computeVariableImportances() {
    float[] vi = new float[units[0]];
    Arrays.fill(vi, 0f);

    float[][] Qik = new float[units[0]][units[2]]; // importance of input i on output k
    float[] sum_wj = new float[units[1]]; // sum of incoming weights into first hidden layer
    float[] sum_wk =
        new float[units[2]]; // sum of incoming weights into output layer (or second hidden layer)
    for (float[] Qi : Qik) Arrays.fill(Qi, 0f);
    Arrays.fill(sum_wj, 0f);
    Arrays.fill(sum_wk, 0f);

    // compute sum of absolute incoming weights
    for (int j = 0; j < units[1]; j++) {
      for (int i = 0; i < units[0]; i++) {
        float wij = get_weights(0).get(j, i);
        sum_wj[j] += Math.abs(wij);
      }
    }
    for (int k = 0; k < units[2]; k++) {
      for (int j = 0; j < units[1]; j++) {
        float wjk = get_weights(1).get(k, j);
        sum_wk[k] += Math.abs(wjk);
      }
    }
    // compute importance of input i on output k as product of connecting weights going through j
    for (int i = 0; i < units[0]; i++) {
      for (int k = 0; k < units[2]; k++) {
        for (int j = 0; j < units[1]; j++) {
          float wij = get_weights(0).get(j, i);
          float wjk = get_weights(1).get(k, j);
          // Qik[i][k] += Math.abs(wij)/sum_wj[j] * wjk; //Wong,Gedeon,Taggart '95
          Qik[i][k] += Math.abs(wij) / sum_wj[j] * Math.abs(wjk) / sum_wk[k]; // Gedeon '97
        }
      }
    }
    // normalize Qik over all outputs k
    for (int k = 0; k < units[2]; k++) {
      float sumQk = 0;
      for (int i = 0; i < units[0]; i++) sumQk += Qik[i][k];
      for (int i = 0; i < units[0]; i++) Qik[i][k] /= sumQk;
    }
    // importance for feature i is the sum over k of i->k importances
    for (int i = 0; i < units[0]; i++) vi[i] = ArrayUtils.sum(Qik[i]);

    // normalize importances such that max(vi) = 1
    ArrayUtils.div(vi, ArrayUtils.maxValue(vi));

    // zero out missing categorical variables if they were never seen
    if (_saw_missing_cats != null) {
      for (int i = 0; i < _saw_missing_cats.length; ++i) {
        assert (data_info._catMissing[i] == 1); // have a missing bucket for each categorical
        if (!_saw_missing_cats[i]) vi[data_info._catOffsets[i + 1] - 1] = 0;
      }
    }
    return vi;
  }
Exemple #3
0
    public final double regularize(double[] u, Regularizer regularization) {
      if (u == null) return 0;
      double ureg = 0;

      switch (regularization) {
        case None:
          return 0;
        case Quadratic:
          for (int i = 0; i < u.length; i++) ureg += u[i] * u[i];
          return ureg;
        case L2:
          for (int i = 0; i < u.length; i++) ureg += u[i] * u[i];
          return Math.sqrt(ureg);
        case L1:
          for (int i = 0; i < u.length; i++) ureg += Math.abs(u[i]);
          return ureg;
        case NonNegative:
          for (int i = 0; i < u.length; i++) {
            if (u[i] < 0) return Double.POSITIVE_INFINITY;
          }
          return 0;
        case OneSparse:
          int card = 0;
          for (int i = 0; i < u.length; i++) {
            if (u[i] < 0) return Double.POSITIVE_INFINITY;
            else if (u[i] > 0) card++;
          }
          return card == 1 ? 0 : Double.POSITIVE_INFINITY;
        case UnitOneSparse:
          int ones = 0, zeros = 0;
          for (int i = 0; i < u.length; i++) {
            if (u[i] == 1) ones++;
            else if (u[i] == 0) zeros++;
            else return Double.POSITIVE_INFINITY;
          }
          return ones == 1 && zeros == u.length - 1 ? 0 : Double.POSITIVE_INFINITY;
        case Simplex:
          double sum = 0, absum = 0;
          for (int i = 0; i < u.length; i++) {
            if (u[i] < 0) return Double.POSITIVE_INFINITY;
            else {
              sum += u[i];
              absum += Math.abs(u[i]);
            }
          }
          return MathUtils.equalsWithinRecSumErr(sum, 1.0, u.length, absum)
              ? 0
              : Double.POSITIVE_INFINITY;
        default:
          throw new RuntimeException("Unknown regularization function " + regularization);
      }
    }
Exemple #4
0
 public final double lgrad(double u, double a, Loss loss) {
   assert loss.isForNumeric() : "Loss function " + loss + " not applicable to numerics";
   switch (loss) {
     case Quadratic:
       return 2 * (u - a);
     case Absolute:
       return Math.signum(u - a);
     case Huber:
       return Math.abs(u - a) <= 1 ? u - a : Math.signum(u - a);
     case Poisson:
       assert a >= 0 : "Poisson loss L(u,a) requires variable a >= 0";
       return Math.exp(u) - a;
     case Hinge:
       // return a*u <= 1 ? -a : 0;
       return a == 0
           ? (-u <= 1 ? 1 : 0)
           : (u <= 1 ? -1 : 0); // Booleans are coded as {0,1} instead of {-1,1}
     case Logistic:
       // return -a/(1+Math.exp(a*u));
       return a == 0
           ? 1 / (1 + Math.exp(-u))
           : -1 / (1 + Math.exp(u)); // Booleans are coded as {0,1} instead of {-1,1}
     case Periodic:
       return ((2 * Math.PI) / _period) * Math.sin((a - u) * (2 * Math.PI) / _period);
     default:
       throw new RuntimeException("Unknown loss function " + loss);
   }
 }
Exemple #5
0
 @Override
 public void map(Chunk[] chks) {
   _gss = new double[_nclass][];
   _rss = new double[_nclass][];
   // For all tree/klasses
   for (int k = 0; k < _nclass; k++) {
     final DTree tree = _trees[k];
     final int leaf = _leafs[k];
     if (tree == null) continue; // Empty class is ignored
     // A leaf-biased array of all active Tree leaves.
     final double gs[] = _gss[k] = new double[tree._len - leaf];
     final double rs[] = _rss[k] = new double[tree._len - leaf];
     final Chunk nids = chk_nids(chks, k); // Node-ids  for this tree/class
     final Chunk ress = chk_work(chks, k); // Residuals for this tree/class
     // If we have all constant responses, then we do not split even the
     // root and the residuals should be zero.
     if (tree.root() instanceof LeafNode) continue;
     for (int row = 0; row < nids._len; row++) { // For all rows
       int nid = (int) nids.at80(row); // Get Node to decide from
       if (nid < 0) continue; // Missing response
       if (tree.node(nid) instanceof UndecidedNode) // If we bottomed out the tree
       nid = tree.node(nid)._pid; // Then take parent's decision
       DecidedNode dn = tree.decided(nid); // Must have a decision point
       if (dn._split._col == -1) // Unable to decide?
       dn = tree.decided(nid = dn._pid); // Then take parent's decision
       int leafnid = dn.ns(chks, row); // Decide down to a leafnode
       assert leaf <= leafnid && leafnid < tree._len;
       assert tree.node(leafnid) instanceof LeafNode;
       // Note: I can which leaf/region I end up in, but I do not care for
       // the prediction presented by the tree.  For GBM, we compute the
       // sum-of-residuals (and sum/abs/mult residuals) for all rows in the
       // leaf, and get our prediction from that.
       nids.set0(row, leafnid);
       assert !ress.isNA0(row);
       double res = ress.at0(row);
       double ares = Math.abs(res);
       gs[leafnid - leaf] += _nclass > 1 ? ares * (1 - ares) : 1;
       rs[leafnid - leaf] += res;
     }
   }
 }
    @Override
    protected void compute2() {
      CoxPHModel model = null;
      try {
        Scope.enter();
        _parms.read_lock_frames(CoxPH.this);
        init(true);

        applyScoringFrameSideEffects();

        // The model to be built
        model = new CoxPHModel(dest(), _parms, new CoxPHModel.CoxPHOutput(CoxPH.this));
        model.delete_and_lock(_key);

        applyTrainingFrameSideEffects();

        int nResponses = 1;
        boolean useAllFactorLevels = false;
        final DataInfo dinfo =
            new DataInfo(
                Key.make(),
                _modelBuilderTrain,
                null,
                nResponses,
                useAllFactorLevels,
                DataInfo.TransformType.DEMEAN,
                TransformType.NONE,
                true,
                false,
                false,
                false,
                false,
                false);
        initStats(model, dinfo);

        final int n_offsets =
            (model._parms.offset_columns == null) ? 0 : model._parms.offset_columns.length;
        final int n_coef = dinfo.fullN() - n_offsets;
        final double[] step = MemoryManager.malloc8d(n_coef);
        final double[] oldCoef = MemoryManager.malloc8d(n_coef);
        final double[] newCoef = MemoryManager.malloc8d(n_coef);
        Arrays.fill(step, Double.NaN);
        Arrays.fill(oldCoef, Double.NaN);
        for (int j = 0; j < n_coef; ++j) newCoef[j] = model._parms.init;
        double oldLoglik = -Double.MAX_VALUE;
        final int n_time = (int) (model._output.max_time - model._output.min_time + 1);
        final boolean has_start_column = (model._parms.start_column != null);
        final boolean has_weights_column = (model._parms.weights_column != null);
        for (int i = 0; i <= model._parms.iter_max; ++i) {
          model._output.iter = i;

          final CoxPHTask coxMR =
              new CoxPHTask(
                      self(),
                      dinfo,
                      newCoef,
                      model._output.min_time,
                      n_time,
                      n_offsets,
                      has_start_column,
                      has_weights_column)
                  .doAll(dinfo._adaptedFrame);

          final double newLoglik = calcLoglik(model, coxMR);
          if (newLoglik > oldLoglik) {
            if (i == 0) calcCounts(model, coxMR);

            calcModelStats(model, newCoef, newLoglik);
            calcCumhaz_0(model, coxMR);

            if (newLoglik == 0) model._output.lre = -Math.log10(Math.abs(oldLoglik - newLoglik));
            else model._output.lre = -Math.log10(Math.abs((oldLoglik - newLoglik) / newLoglik));
            if (model._output.lre >= model._parms.lre_min) break;

            Arrays.fill(step, 0);
            for (int j = 0; j < n_coef; ++j)
              for (int k = 0; k < n_coef; ++k)
                step[j] -= model._output.var_coef[j][k] * model._output.gradient[k];
            for (int j = 0; j < n_coef; ++j)
              if (Double.isNaN(step[j]) || Double.isInfinite(step[j])) break;

            oldLoglik = newLoglik;
            System.arraycopy(newCoef, 0, oldCoef, 0, oldCoef.length);
          } else {
            for (int j = 0; j < n_coef; ++j) step[j] /= 2;
          }

          for (int j = 0; j < n_coef; ++j) newCoef[j] = oldCoef[j] - step[j];
        }

        model.update(_key);
      } catch (Throwable t) {
        Job thisJob = DKV.getGet(_key);
        if (thisJob._state == JobState.CANCELLED) {
          Log.info("Job cancelled by user.");
        } else {
          t.printStackTrace();
          failed(t);
          throw t;
        }
      } finally {
        updateModelOutput();
        _parms.read_unlock_frames(CoxPH.this);
        Scope.exit();
        done(); // Job done!
      }
      tryComplete();
    }