Exemple #1
0
 public void run(String arg) {
   imp = WindowManager.getCurrentImage();
   if (arg.equals("add")) {
     addToRoiManager(imp);
     return;
   }
   if (imp == null) {
     IJ.noImage();
     return;
   }
   if (arg.equals("all")) imp.setRoi(0, 0, imp.getWidth(), imp.getHeight());
   else if (arg.equals("none")) imp.killRoi();
   else if (arg.equals("restore")) imp.restoreRoi();
   else if (arg.equals("spline")) fitSpline();
   else if (arg.equals("circle")) fitCircle(imp);
   else if (arg.equals("ellipse")) createEllipse(imp);
   else if (arg.equals("hull")) convexHull(imp);
   else if (arg.equals("mask")) createMask(imp);
   else if (arg.equals("from")) createSelectionFromMask(imp);
   else if (arg.equals("inverse")) invert(imp);
   else if (arg.equals("toarea")) lineToArea(imp);
   else if (arg.equals("toline")) areaToLine(imp);
   else if (arg.equals("properties")) {
     setProperties("Properties ", imp.getRoi());
     imp.draw();
   } else if (arg.equals("band")) makeBand(imp);
   else if (arg.equals("tobox")) toBoundingBox(imp);
   else runMacro(arg);
 }
Exemple #2
0
 void createEllipse(ImagePlus imp) {
   IJ.showStatus("Fitting ellipse");
   Roi roi = imp.getRoi();
   if (roi == null) {
     noRoi("Fit Ellipse");
     return;
   }
   if (roi.isLine()) {
     IJ.error("Fit Ellipse", "\"Fit Ellipse\" does not work with line selections");
     return;
   }
   ImageProcessor ip = imp.getProcessor();
   ip.setRoi(roi);
   int options = Measurements.CENTROID + Measurements.ELLIPSE;
   ImageStatistics stats = ImageStatistics.getStatistics(ip, options, null);
   double dx = stats.major * Math.cos(stats.angle / 180.0 * Math.PI) / 2.0;
   double dy = -stats.major * Math.sin(stats.angle / 180.0 * Math.PI) / 2.0;
   double x1 = stats.xCentroid - dx;
   double x2 = stats.xCentroid + dx;
   double y1 = stats.yCentroid - dy;
   double y2 = stats.yCentroid + dy;
   double aspectRatio = stats.minor / stats.major;
   imp.killRoi();
   imp.setRoi(new EllipseRoi(x1, y1, x2, y2, aspectRatio));
 }
Exemple #3
0
 void toBoundingBox(ImagePlus imp) {
   Roi roi = imp.getRoi();
   if (roi == null) {
     noRoi("To Bounding Box");
     return;
   }
   Rectangle r = roi.getBounds();
   imp.killRoi();
   imp.setRoi(new Roi(r.x, r.y, r.width, r.height));
 }
Exemple #4
0
  /*
  if selection is closed shape, create a circle with the same area and centroid, otherwise use<br>
  the Pratt method to fit a circle to the points that define the line or multi-point selection.<br>
  Reference: Pratt V., Direct least-squares fitting of algebraic surfaces", Computer Graphics, Vol. 21, pages 145-152 (1987).<br>
  Original code: Nikolai Chernov's MATLAB script for Newton-based Pratt fit.<br>
  (http://www.math.uab.edu/~chernov/cl/MATLABcircle.html)<br>
  Java version: https://github.com/mdoube/BoneJ/blob/master/src/org/doube/geometry/FitCircle.java<br>
  @authors Nikolai Chernov, Michael Doube, Ved Sharma
  */
  void fitCircle(ImagePlus imp) {
    Roi roi = imp.getRoi();
    if (roi == null) {
      noRoi("Fit Circle");
      return;
    }

    if (roi.isArea()) { // create circle with the same area and centroid
      ImageProcessor ip = imp.getProcessor();
      ip.setRoi(roi);
      ImageStatistics stats =
          ImageStatistics.getStatistics(ip, Measurements.AREA + Measurements.CENTROID, null);
      double r = Math.sqrt(stats.pixelCount / Math.PI);
      imp.killRoi();
      int d = (int) Math.round(2.0 * r);
      IJ.makeOval(
          (int) Math.round(stats.xCentroid - r), (int) Math.round(stats.yCentroid - r), d, d);
      return;
    }

    Polygon poly = roi.getPolygon();
    int n = poly.npoints;
    int[] x = poly.xpoints;
    int[] y = poly.ypoints;
    if (n < 3) {
      IJ.error("Fit Circle", "At least 3 points are required to fit a circle.");
      return;
    }

    // calculate point centroid
    double sumx = 0, sumy = 0;
    for (int i = 0; i < n; i++) {
      sumx = sumx + poly.xpoints[i];
      sumy = sumy + poly.ypoints[i];
    }
    double meanx = sumx / n;
    double meany = sumy / n;

    // calculate moments
    double[] X = new double[n], Y = new double[n];
    double Mxx = 0, Myy = 0, Mxy = 0, Mxz = 0, Myz = 0, Mzz = 0;
    for (int i = 0; i < n; i++) {
      X[i] = x[i] - meanx;
      Y[i] = y[i] - meany;
      double Zi = X[i] * X[i] + Y[i] * Y[i];
      Mxy = Mxy + X[i] * Y[i];
      Mxx = Mxx + X[i] * X[i];
      Myy = Myy + Y[i] * Y[i];
      Mxz = Mxz + X[i] * Zi;
      Myz = Myz + Y[i] * Zi;
      Mzz = Mzz + Zi * Zi;
    }
    Mxx = Mxx / n;
    Myy = Myy / n;
    Mxy = Mxy / n;
    Mxz = Mxz / n;
    Myz = Myz / n;
    Mzz = Mzz / n;

    // calculate the coefficients of the characteristic polynomial
    double Mz = Mxx + Myy;
    double Cov_xy = Mxx * Myy - Mxy * Mxy;
    double Mxz2 = Mxz * Mxz;
    double Myz2 = Myz * Myz;
    double A2 = 4 * Cov_xy - 3 * Mz * Mz - Mzz;
    double A1 = Mzz * Mz + 4 * Cov_xy * Mz - Mxz2 - Myz2 - Mz * Mz * Mz;
    double A0 = Mxz2 * Myy + Myz2 * Mxx - Mzz * Cov_xy - 2 * Mxz * Myz * Mxy + Mz * Mz * Cov_xy;
    double A22 = A2 + A2;
    double epsilon = 1e-12;
    double ynew = 1e+20;
    int IterMax = 20;
    double xnew = 0;
    int iterations = 0;

    // Newton's method starting at x=0
    for (int iter = 1; iter <= IterMax; iter++) {
      iterations = iter;
      double yold = ynew;
      ynew = A0 + xnew * (A1 + xnew * (A2 + 4. * xnew * xnew));
      if (Math.abs(ynew) > Math.abs(yold)) {
        if (IJ.debugMode) IJ.log("Fit Circle: wrong direction: |ynew| > |yold|");
        xnew = 0;
        break;
      }
      double Dy = A1 + xnew * (A22 + 16 * xnew * xnew);
      double xold = xnew;
      xnew = xold - ynew / Dy;
      if (Math.abs((xnew - xold) / xnew) < epsilon) break;
      if (iter >= IterMax) {
        if (IJ.debugMode) IJ.log("Fit Circle: will not converge");
        xnew = 0;
      }
      if (xnew < 0) {
        if (IJ.debugMode) IJ.log("Fit Circle: negative root:  x = " + xnew);
        xnew = 0;
      }
    }
    if (IJ.debugMode)
      IJ.log("Fit Circle: n=" + n + ", xnew=" + IJ.d2s(xnew, 2) + ", iterations=" + iterations);

    // calculate the circle parameters
    double DET = xnew * xnew - xnew * Mz + Cov_xy;
    double CenterX = (Mxz * (Myy - xnew) - Myz * Mxy) / (2 * DET);
    double CenterY = (Myz * (Mxx - xnew) - Mxz * Mxy) / (2 * DET);
    double radius = Math.sqrt(CenterX * CenterX + CenterY * CenterY + Mz + 2 * xnew);
    if (Double.isNaN(radius)) {
      IJ.error("Fit Circle", "Points are collinear.");
      return;
    }
    CenterX = CenterX + meanx;
    CenterY = CenterY + meany;
    imp.killRoi();
    IJ.makeOval(
        (int) Math.round(CenterX - radius),
        (int) Math.round(CenterY - radius),
        (int) Math.round(2 * radius),
        (int) Math.round(2 * radius));
  }
  public void run(ImageProcessor ip) {
    String[] imageNames = getOpenImageNames();
    if (imageNames[0] == "None") {
      IJ.error("need at least 2 binary open images");
      return;
    }
    double previousMinOverlap = Prefs.get("BVTB.BinaryFeatureExtractor.minOverlap", 0);
    boolean previousCombine = Prefs.get("BVTB.BinaryFeatureExtractor.combine", false);

    GenericDialog gd = new GenericDialog("Binary Feature Extractor");
    gd.addChoice("Objects image", imageNames, imageNames[0]);
    gd.addChoice("Selector image", imageNames, imageNames[1]);
    gd.addNumericField("Object_overlap in % (0=off)", previousMinOverlap, 0, 9, "");
    gd.addCheckbox("Combine objects and selectors", previousCombine);
    gd.addCheckbox("Count output", true);
    gd.addCheckbox("Analysis tables", false);
    gd.showDialog();
    if (gd.wasCanceled()) {
      return;
    }
    String objectsImgTitle = gd.getNextChoice();
    String selectorsImgTitle = gd.getNextChoice();
    double minOverlap = gd.getNextNumber();
    boolean combineImages = gd.getNextBoolean();
    boolean showCountOutput = gd.getNextBoolean();
    boolean showAnalysis = gd.getNextBoolean();
    if (gd.invalidNumber() || minOverlap < 0 || minOverlap > 100) {
      IJ.error("invalid number");
      return;
    }
    Prefs.set("BVTB.BinaryFeatureExtractor.minOverlap", minOverlap);
    Prefs.set("BVTB.BinaryFeatureExtractor.combine", combineImages);

    if (objectsImgTitle.equals(selectorsImgTitle)) {
      IJ.error("images need to be different");
      return;
    }

    ImagePlus objectsImp = WindowManager.getImage(objectsImgTitle);
    ImageProcessor objectsIP = objectsImp.getProcessor();
    ImagePlus selectorsImp = WindowManager.getImage(selectorsImgTitle);
    ImageProcessor selectorsIP = selectorsImp.getProcessor();

    if (!objectsIP.isBinary() || !selectorsIP.isBinary()) {
      IJ.error("works with 8-bit binary images only");
      return;
    }

    if ((objectsImp.getWidth() != selectorsImp.getWidth())
        || objectsImp.getHeight() != selectorsImp.getHeight()) {
      IJ.error("images need to be of the same size");
      return;
    }

    // close any existing RoiManager before instantiating a new one for this analysis
    RoiManager oldRM = RoiManager.getInstance2();
    if (oldRM != null) {
      oldRM.close();
    }

    RoiManager objectsRM = new RoiManager(true);
    ResultsTable objectsRT = new ResultsTable();
    ParticleAnalyzer analyzeObjects =
        new ParticleAnalyzer(analyzerOptions, measurementFlags, objectsRT, 0.0, 999999999.9);
    analyzeObjects.setRoiManager(objectsRM);

    analyzeObjects.analyze(objectsImp);
    objectsRM.runCommand("Show None");
    int objectNumber = objectsRT.getCounter();

    Roi[] objectRoi = objectsRM.getRoisAsArray();

    ResultsTable measureSelectorsRT = new ResultsTable();
    Analyzer overlapAnalyzer = new Analyzer(selectorsImp, measurementFlags, measureSelectorsRT);

    ImagePlus outputImp =
        IJ.createImage("output", "8-bit black", objectsImp.getWidth(), objectsImp.getHeight(), 1);
    ImageProcessor outputIP = outputImp.getProcessor();

    double[] measuredOverlap = new double[objectNumber];

    outputIP.setValue(255.0);
    for (int o = 0; o < objectNumber; o++) {
      selectorsImp.killRoi();
      selectorsImp.setRoi(objectRoi[o]);
      overlapAnalyzer.measure();
      measuredOverlap[o] = measureSelectorsRT.getValue("%Area", o);
      if (minOverlap != 0.0 && measuredOverlap[o] >= minOverlap) {
        outputIP.fill(objectRoi[o]);
        finalCount++;
      } else if (minOverlap == 0.0 && measuredOverlap[o] > 0.0) {
        outputIP.fill(objectRoi[o]);
        finalCount++;
      }
    }
    // measureSelectorsRT.show("Objects");

    selectorsImp.killRoi();
    RoiManager selectorRM = new RoiManager(true);
    ResultsTable selectorRT = new ResultsTable();
    ParticleAnalyzer.setRoiManager(selectorRM);
    ParticleAnalyzer analyzeSelectors =
        new ParticleAnalyzer(analyzerOptions, measurementFlags, selectorRT, 0.0, 999999999.9);
    analyzeSelectors.analyze(selectorsImp);
    selectorRM.runCommand("Show None");
    int selectorNumber = selectorRT.getCounter();

    if (combineImages) {
      outputImp.updateAndDraw();
      Roi[] selectorRoi = selectorRM.getRoisAsArray();

      ResultsTable measureObjectsRT = new ResultsTable();
      Analyzer selectorAnalyzer = new Analyzer(outputImp, measurementFlags, measureObjectsRT);

      double[] selectorOverlap = new double[selectorNumber];
      outputIP.setValue(255.0);
      for (int s = 0; s < selectorNumber; s++) {
        outputImp.killRoi();
        outputImp.setRoi(selectorRoi[s]);
        selectorAnalyzer.measure();
        selectorOverlap[s] = measureObjectsRT.getValue("%Area", s);
        if (selectorOverlap[s] > 0.0d) {
          outputIP.fill(selectorRoi[s]);
        }
      }
      selectorRoi = null;
      selectorAnalyzer = null;
      measureObjectsRT = null;
    }
    // selectorRT.show("Selectors");
    outputImp.killRoi();
    String outputImageTitle = WindowManager.getUniqueName("Extracted_" + objectsImgTitle);
    outputImp.setTitle(outputImageTitle);
    outputImp.show();
    outputImp.changes = true;

    if (showCountOutput) {
      String[] openTextWindows = WindowManager.getNonImageTitles();
      boolean makeNewTable = true;
      for (int w = 0; w < openTextWindows.length; w++) {
        if (openTextWindows[w].equals("BFE_Results")) {
          makeNewTable = false;
        }
      }

      TextWindow existingCountTable = ResultsTable.getResultsWindow();
      if (makeNewTable) {
        countTable = new ResultsTable();
        countTable.setPrecision(0);
        countTable.setValue("Image", 0, outputImageTitle);
        countTable.setValue("Objects", 0, objectNumber);
        countTable.setValue("Selectors", 0, selectorNumber);
        countTable.setValue("Extracted", 0, finalCount);
        countTable.show("BFE_Results");
      } else {
        IJ.renameResults("BFE_Results", "Results");
        countTable = ResultsTable.getResultsTable();
        countTable.setPrecision(0);
        countTable.incrementCounter();
        countTable.addValue("Image", outputImageTitle);
        countTable.addValue("Objects", objectNumber);
        countTable.addValue("Selectors", selectorNumber);
        countTable.addValue("Extracted", finalCount);
        IJ.renameResults("Results", "BFE_Results");
        countTable.show("BFE_Results");
      }
    }

    if (showAnalysis) {
      ResultsTable extractedRT = new ResultsTable();
      ParticleAnalyzer analyzeExtracted =
          new ParticleAnalyzer(
              ParticleAnalyzer.CLEAR_WORKSHEET | ParticleAnalyzer.RECORD_STARTS,
              measurementFlags,
              extractedRT,
              0.0,
              999999999.9);
      analyzeExtracted.analyze(outputImp);
      objectsRT.show("Objects");
      selectorRT.show("Selectors");
      extractedRT.show("Extracted");
    } else {
      objectsRT = null;
      selectorRT = null;
    }

    objectsRM = null;
    measureSelectorsRT = null;
    analyzeObjects = null;
    overlapAnalyzer = null;
    objectRoi = null;
    selectorRM = null;

    objectsImp.killRoi();
    objectsImp.changes = false;
    selectorsImp.changes = false;
  }