public void run(String arg) { imp = WindowManager.getCurrentImage(); if (arg.equals("add")) { addToRoiManager(imp); return; } if (imp == null) { IJ.noImage(); return; } if (arg.equals("all")) imp.setRoi(0, 0, imp.getWidth(), imp.getHeight()); else if (arg.equals("none")) imp.killRoi(); else if (arg.equals("restore")) imp.restoreRoi(); else if (arg.equals("spline")) fitSpline(); else if (arg.equals("circle")) fitCircle(imp); else if (arg.equals("ellipse")) createEllipse(imp); else if (arg.equals("hull")) convexHull(imp); else if (arg.equals("mask")) createMask(imp); else if (arg.equals("from")) createSelectionFromMask(imp); else if (arg.equals("inverse")) invert(imp); else if (arg.equals("toarea")) lineToArea(imp); else if (arg.equals("toline")) areaToLine(imp); else if (arg.equals("properties")) { setProperties("Properties ", imp.getRoi()); imp.draw(); } else if (arg.equals("band")) makeBand(imp); else if (arg.equals("tobox")) toBoundingBox(imp); else runMacro(arg); }
void createEllipse(ImagePlus imp) { IJ.showStatus("Fitting ellipse"); Roi roi = imp.getRoi(); if (roi == null) { noRoi("Fit Ellipse"); return; } if (roi.isLine()) { IJ.error("Fit Ellipse", "\"Fit Ellipse\" does not work with line selections"); return; } ImageProcessor ip = imp.getProcessor(); ip.setRoi(roi); int options = Measurements.CENTROID + Measurements.ELLIPSE; ImageStatistics stats = ImageStatistics.getStatistics(ip, options, null); double dx = stats.major * Math.cos(stats.angle / 180.0 * Math.PI) / 2.0; double dy = -stats.major * Math.sin(stats.angle / 180.0 * Math.PI) / 2.0; double x1 = stats.xCentroid - dx; double x2 = stats.xCentroid + dx; double y1 = stats.yCentroid - dy; double y2 = stats.yCentroid + dy; double aspectRatio = stats.minor / stats.major; imp.killRoi(); imp.setRoi(new EllipseRoi(x1, y1, x2, y2, aspectRatio)); }
void toBoundingBox(ImagePlus imp) { Roi roi = imp.getRoi(); if (roi == null) { noRoi("To Bounding Box"); return; } Rectangle r = roi.getBounds(); imp.killRoi(); imp.setRoi(new Roi(r.x, r.y, r.width, r.height)); }
/* if selection is closed shape, create a circle with the same area and centroid, otherwise use<br> the Pratt method to fit a circle to the points that define the line or multi-point selection.<br> Reference: Pratt V., Direct least-squares fitting of algebraic surfaces", Computer Graphics, Vol. 21, pages 145-152 (1987).<br> Original code: Nikolai Chernov's MATLAB script for Newton-based Pratt fit.<br> (http://www.math.uab.edu/~chernov/cl/MATLABcircle.html)<br> Java version: https://github.com/mdoube/BoneJ/blob/master/src/org/doube/geometry/FitCircle.java<br> @authors Nikolai Chernov, Michael Doube, Ved Sharma */ void fitCircle(ImagePlus imp) { Roi roi = imp.getRoi(); if (roi == null) { noRoi("Fit Circle"); return; } if (roi.isArea()) { // create circle with the same area and centroid ImageProcessor ip = imp.getProcessor(); ip.setRoi(roi); ImageStatistics stats = ImageStatistics.getStatistics(ip, Measurements.AREA + Measurements.CENTROID, null); double r = Math.sqrt(stats.pixelCount / Math.PI); imp.killRoi(); int d = (int) Math.round(2.0 * r); IJ.makeOval( (int) Math.round(stats.xCentroid - r), (int) Math.round(stats.yCentroid - r), d, d); return; } Polygon poly = roi.getPolygon(); int n = poly.npoints; int[] x = poly.xpoints; int[] y = poly.ypoints; if (n < 3) { IJ.error("Fit Circle", "At least 3 points are required to fit a circle."); return; } // calculate point centroid double sumx = 0, sumy = 0; for (int i = 0; i < n; i++) { sumx = sumx + poly.xpoints[i]; sumy = sumy + poly.ypoints[i]; } double meanx = sumx / n; double meany = sumy / n; // calculate moments double[] X = new double[n], Y = new double[n]; double Mxx = 0, Myy = 0, Mxy = 0, Mxz = 0, Myz = 0, Mzz = 0; for (int i = 0; i < n; i++) { X[i] = x[i] - meanx; Y[i] = y[i] - meany; double Zi = X[i] * X[i] + Y[i] * Y[i]; Mxy = Mxy + X[i] * Y[i]; Mxx = Mxx + X[i] * X[i]; Myy = Myy + Y[i] * Y[i]; Mxz = Mxz + X[i] * Zi; Myz = Myz + Y[i] * Zi; Mzz = Mzz + Zi * Zi; } Mxx = Mxx / n; Myy = Myy / n; Mxy = Mxy / n; Mxz = Mxz / n; Myz = Myz / n; Mzz = Mzz / n; // calculate the coefficients of the characteristic polynomial double Mz = Mxx + Myy; double Cov_xy = Mxx * Myy - Mxy * Mxy; double Mxz2 = Mxz * Mxz; double Myz2 = Myz * Myz; double A2 = 4 * Cov_xy - 3 * Mz * Mz - Mzz; double A1 = Mzz * Mz + 4 * Cov_xy * Mz - Mxz2 - Myz2 - Mz * Mz * Mz; double A0 = Mxz2 * Myy + Myz2 * Mxx - Mzz * Cov_xy - 2 * Mxz * Myz * Mxy + Mz * Mz * Cov_xy; double A22 = A2 + A2; double epsilon = 1e-12; double ynew = 1e+20; int IterMax = 20; double xnew = 0; int iterations = 0; // Newton's method starting at x=0 for (int iter = 1; iter <= IterMax; iter++) { iterations = iter; double yold = ynew; ynew = A0 + xnew * (A1 + xnew * (A2 + 4. * xnew * xnew)); if (Math.abs(ynew) > Math.abs(yold)) { if (IJ.debugMode) IJ.log("Fit Circle: wrong direction: |ynew| > |yold|"); xnew = 0; break; } double Dy = A1 + xnew * (A22 + 16 * xnew * xnew); double xold = xnew; xnew = xold - ynew / Dy; if (Math.abs((xnew - xold) / xnew) < epsilon) break; if (iter >= IterMax) { if (IJ.debugMode) IJ.log("Fit Circle: will not converge"); xnew = 0; } if (xnew < 0) { if (IJ.debugMode) IJ.log("Fit Circle: negative root: x = " + xnew); xnew = 0; } } if (IJ.debugMode) IJ.log("Fit Circle: n=" + n + ", xnew=" + IJ.d2s(xnew, 2) + ", iterations=" + iterations); // calculate the circle parameters double DET = xnew * xnew - xnew * Mz + Cov_xy; double CenterX = (Mxz * (Myy - xnew) - Myz * Mxy) / (2 * DET); double CenterY = (Myz * (Mxx - xnew) - Mxz * Mxy) / (2 * DET); double radius = Math.sqrt(CenterX * CenterX + CenterY * CenterY + Mz + 2 * xnew); if (Double.isNaN(radius)) { IJ.error("Fit Circle", "Points are collinear."); return; } CenterX = CenterX + meanx; CenterY = CenterY + meany; imp.killRoi(); IJ.makeOval( (int) Math.round(CenterX - radius), (int) Math.round(CenterY - radius), (int) Math.round(2 * radius), (int) Math.round(2 * radius)); }
public void run(ImageProcessor ip) { String[] imageNames = getOpenImageNames(); if (imageNames[0] == "None") { IJ.error("need at least 2 binary open images"); return; } double previousMinOverlap = Prefs.get("BVTB.BinaryFeatureExtractor.minOverlap", 0); boolean previousCombine = Prefs.get("BVTB.BinaryFeatureExtractor.combine", false); GenericDialog gd = new GenericDialog("Binary Feature Extractor"); gd.addChoice("Objects image", imageNames, imageNames[0]); gd.addChoice("Selector image", imageNames, imageNames[1]); gd.addNumericField("Object_overlap in % (0=off)", previousMinOverlap, 0, 9, ""); gd.addCheckbox("Combine objects and selectors", previousCombine); gd.addCheckbox("Count output", true); gd.addCheckbox("Analysis tables", false); gd.showDialog(); if (gd.wasCanceled()) { return; } String objectsImgTitle = gd.getNextChoice(); String selectorsImgTitle = gd.getNextChoice(); double minOverlap = gd.getNextNumber(); boolean combineImages = gd.getNextBoolean(); boolean showCountOutput = gd.getNextBoolean(); boolean showAnalysis = gd.getNextBoolean(); if (gd.invalidNumber() || minOverlap < 0 || minOverlap > 100) { IJ.error("invalid number"); return; } Prefs.set("BVTB.BinaryFeatureExtractor.minOverlap", minOverlap); Prefs.set("BVTB.BinaryFeatureExtractor.combine", combineImages); if (objectsImgTitle.equals(selectorsImgTitle)) { IJ.error("images need to be different"); return; } ImagePlus objectsImp = WindowManager.getImage(objectsImgTitle); ImageProcessor objectsIP = objectsImp.getProcessor(); ImagePlus selectorsImp = WindowManager.getImage(selectorsImgTitle); ImageProcessor selectorsIP = selectorsImp.getProcessor(); if (!objectsIP.isBinary() || !selectorsIP.isBinary()) { IJ.error("works with 8-bit binary images only"); return; } if ((objectsImp.getWidth() != selectorsImp.getWidth()) || objectsImp.getHeight() != selectorsImp.getHeight()) { IJ.error("images need to be of the same size"); return; } // close any existing RoiManager before instantiating a new one for this analysis RoiManager oldRM = RoiManager.getInstance2(); if (oldRM != null) { oldRM.close(); } RoiManager objectsRM = new RoiManager(true); ResultsTable objectsRT = new ResultsTable(); ParticleAnalyzer analyzeObjects = new ParticleAnalyzer(analyzerOptions, measurementFlags, objectsRT, 0.0, 999999999.9); analyzeObjects.setRoiManager(objectsRM); analyzeObjects.analyze(objectsImp); objectsRM.runCommand("Show None"); int objectNumber = objectsRT.getCounter(); Roi[] objectRoi = objectsRM.getRoisAsArray(); ResultsTable measureSelectorsRT = new ResultsTable(); Analyzer overlapAnalyzer = new Analyzer(selectorsImp, measurementFlags, measureSelectorsRT); ImagePlus outputImp = IJ.createImage("output", "8-bit black", objectsImp.getWidth(), objectsImp.getHeight(), 1); ImageProcessor outputIP = outputImp.getProcessor(); double[] measuredOverlap = new double[objectNumber]; outputIP.setValue(255.0); for (int o = 0; o < objectNumber; o++) { selectorsImp.killRoi(); selectorsImp.setRoi(objectRoi[o]); overlapAnalyzer.measure(); measuredOverlap[o] = measureSelectorsRT.getValue("%Area", o); if (minOverlap != 0.0 && measuredOverlap[o] >= minOverlap) { outputIP.fill(objectRoi[o]); finalCount++; } else if (minOverlap == 0.0 && measuredOverlap[o] > 0.0) { outputIP.fill(objectRoi[o]); finalCount++; } } // measureSelectorsRT.show("Objects"); selectorsImp.killRoi(); RoiManager selectorRM = new RoiManager(true); ResultsTable selectorRT = new ResultsTable(); ParticleAnalyzer.setRoiManager(selectorRM); ParticleAnalyzer analyzeSelectors = new ParticleAnalyzer(analyzerOptions, measurementFlags, selectorRT, 0.0, 999999999.9); analyzeSelectors.analyze(selectorsImp); selectorRM.runCommand("Show None"); int selectorNumber = selectorRT.getCounter(); if (combineImages) { outputImp.updateAndDraw(); Roi[] selectorRoi = selectorRM.getRoisAsArray(); ResultsTable measureObjectsRT = new ResultsTable(); Analyzer selectorAnalyzer = new Analyzer(outputImp, measurementFlags, measureObjectsRT); double[] selectorOverlap = new double[selectorNumber]; outputIP.setValue(255.0); for (int s = 0; s < selectorNumber; s++) { outputImp.killRoi(); outputImp.setRoi(selectorRoi[s]); selectorAnalyzer.measure(); selectorOverlap[s] = measureObjectsRT.getValue("%Area", s); if (selectorOverlap[s] > 0.0d) { outputIP.fill(selectorRoi[s]); } } selectorRoi = null; selectorAnalyzer = null; measureObjectsRT = null; } // selectorRT.show("Selectors"); outputImp.killRoi(); String outputImageTitle = WindowManager.getUniqueName("Extracted_" + objectsImgTitle); outputImp.setTitle(outputImageTitle); outputImp.show(); outputImp.changes = true; if (showCountOutput) { String[] openTextWindows = WindowManager.getNonImageTitles(); boolean makeNewTable = true; for (int w = 0; w < openTextWindows.length; w++) { if (openTextWindows[w].equals("BFE_Results")) { makeNewTable = false; } } TextWindow existingCountTable = ResultsTable.getResultsWindow(); if (makeNewTable) { countTable = new ResultsTable(); countTable.setPrecision(0); countTable.setValue("Image", 0, outputImageTitle); countTable.setValue("Objects", 0, objectNumber); countTable.setValue("Selectors", 0, selectorNumber); countTable.setValue("Extracted", 0, finalCount); countTable.show("BFE_Results"); } else { IJ.renameResults("BFE_Results", "Results"); countTable = ResultsTable.getResultsTable(); countTable.setPrecision(0); countTable.incrementCounter(); countTable.addValue("Image", outputImageTitle); countTable.addValue("Objects", objectNumber); countTable.addValue("Selectors", selectorNumber); countTable.addValue("Extracted", finalCount); IJ.renameResults("Results", "BFE_Results"); countTable.show("BFE_Results"); } } if (showAnalysis) { ResultsTable extractedRT = new ResultsTable(); ParticleAnalyzer analyzeExtracted = new ParticleAnalyzer( ParticleAnalyzer.CLEAR_WORKSHEET | ParticleAnalyzer.RECORD_STARTS, measurementFlags, extractedRT, 0.0, 999999999.9); analyzeExtracted.analyze(outputImp); objectsRT.show("Objects"); selectorRT.show("Selectors"); extractedRT.show("Extracted"); } else { objectsRT = null; selectorRT = null; } objectsRM = null; measureSelectorsRT = null; analyzeObjects = null; overlapAnalyzer = null; objectRoi = null; selectorRM = null; objectsImp.killRoi(); objectsImp.changes = false; selectorsImp.changes = false; }