public List<Triple> getUnshieldedCollidersFromGraph(Graph graph) { List<Triple> colliders = new ArrayList<>(); List<Node> nodes = graph.getNodes(); for (Node b : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(b); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node a = adjacentNodes.get(combination[0]); Node c = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (graph.isAdjacentTo(a, c)) { continue; } if (graph.isDefCollider(a, b, c)) { colliders.add(new Triple(a, b, c)); } } } return colliders; }
//////////////////////////////////////////////// // collect in rTupleList all unshielded tuples //////////////////////////////////////////////// private List<Node[]> getRTuples() { List<Node[]> rTuples = new ArrayList<Node[]>(); List<Node> nodes = graph.getNodes(); for (Node j : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(j); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node i = adjacentNodes.get(combination[0]); Node k = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (!graph.isAdjacentTo(i, k)) { Node[] newTuple = {i, j, k}; rTuples.add(newTuple); } } } return (rTuples); }
/** * Step C of PC; orients colliders using specified sepset. That is, orients x *-* y *-* z as x *-> * y <-* z just in case y is in Sepset({x, z}). */ public Map<Triple, Double> findCollidersUsingSepsets( SepsetProducer sepsetProducer, Graph graph, boolean verbose, IKnowledge knowledge) { TetradLogger.getInstance().log("details", "Starting Collider Orientation:"); Map<Triple, Double> colliders = new HashMap<>(); System.out.println("Looking for colliders"); List<Node> nodes = graph.getNodes(); for (Node b : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(b); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node a = adjacentNodes.get(combination[0]); Node c = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (graph.isAdjacentTo(a, c)) { continue; } List<Node> sepset = sepsetProducer.getSepset(a, c); if (sepset == null) continue; // if (sepsetProducer.getPValue() < 0.5) continue; if (!sepset.contains(b)) { if (verbose) { // boolean dsep = this.dsep.isIndependent(a, c); // System.out.println("QQQ p = " + independenceTest.getPValue() + // " " + dsep); System.out.println( "\nCollider orientation <" + a + ", " + b + ", " + c + "> sepset = " + sepset); } colliders.put(new Triple(a, b, c), sepsetProducer.getPValue()); TetradLogger.getInstance() .log("colliderOrientations", SearchLogUtils.colliderOrientedMsg(a, b, c, sepset)); } } } TetradLogger.getInstance().log("details", "Finishing Collider Orientation."); System.out.println("Done finding colliders"); return colliders; }
public static boolean meekR1Locally2( Graph graph, Knowledge knowledge, IndependenceTest test, int depth) { List<Node> nodes = graph.getNodes(); boolean changed = true; while (changed) { changed = false; for (Node a : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(a); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node b = adjacentNodes.get(combination[0]); Node c = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (graph.isAdjacentTo(b, c)) { continue; } if (graph.getEndpoint(b, a) == Endpoint.ARROW && graph.isUndirectedFromTo(a, c)) { if (existsLocalSepsetWithoutDet(b, a, c, test, graph, depth)) { continue; } if (isArrowpointAllowed(a, c, knowledge)) { graph.setEndpoint(a, c, Endpoint.ARROW); TetradLogger.getInstance() .edgeOriented(SearchLogUtils.edgeOrientedMsg("Meek R1", graph.getEdge(a, c))); changed = true; } } else if (graph.getEndpoint(c, a) == Endpoint.ARROW && graph.isUndirectedFromTo(a, b)) { if (existsLocalSepsetWithoutDet(b, a, c, test, graph, depth)) { continue; } if (isArrowpointAllowed(a, b, knowledge)) { graph.setEndpoint(a, b, Endpoint.ARROW); TetradLogger.getInstance() .edgeOriented(SearchLogUtils.edgeOrientedMsg("Meek R1", graph.getEdge(a, b))); changed = true; } } } } } return changed; }
/** * Performs step C of the algorithm, as indicated on page xxx of CPS, with the modification that * X--W--Y is oriented as X-->W<--Y if W is *determined by* the sepset of (X, Y), rather than W * just being *in* the sepset of (X, Y). */ public static void pcdOrientC( SepsetMap set, IndependenceTest test, Knowledge knowledge, Graph graph) { TetradLogger.getInstance().log("info", "Staring Collider Orientation:"); List<Node> nodes = graph.getNodes(); for (Node y : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(y); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node x = adjacentNodes.get(combination[0]); Node z = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (graph.isAdjacentTo(x, z)) { continue; } List<Node> sepset = set.get(x, z); if (sepset == null) { continue; } List<Node> augmentedSet = new LinkedList<Node>(sepset); augmentedSet.add(y); if (test.determines(sepset, y)) { continue; } // if (!test.splitDetermines(sepset, x, z) && test.splitDetermines(augmentedSet, x, z)) { continue; } if (!isArrowpointAllowed(x, y, knowledge) || !isArrowpointAllowed(z, y, knowledge)) { continue; } graph.setEndpoint(x, y, Endpoint.ARROW); graph.setEndpoint(z, y, Endpoint.ARROW); TetradLogger.getInstance() .log("colliderOriented", SearchLogUtils.colliderOrientedMsg(x, y, z)); } } TetradLogger.getInstance().log("info", "Finishing Collider Orientation."); }
/** Meek's rule R3. If a--b, a--c, a--d, c-->b, c-->b, then orient a-->b. */ public static boolean meekR3(Graph graph, Knowledge knowledge) { List<Node> nodes = graph.getNodes(); boolean changed = false; for (Node a : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(a); if (adjacentNodes.size() < 3) { continue; } for (Node b : adjacentNodes) { List<Node> otherAdjacents = new LinkedList<Node>(adjacentNodes); otherAdjacents.remove(b); if (!graph.isUndirectedFromTo(a, b)) { continue; } ChoiceGenerator cg = new ChoiceGenerator(otherAdjacents.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node c = otherAdjacents.get(combination[0]); Node d = otherAdjacents.get(combination[1]); if (graph.isAdjacentTo(c, d)) { continue; } if (!graph.isUndirectedFromTo(a, c)) { continue; } if (!graph.isUndirectedFromTo(a, d)) { continue; } if (graph.isDirectedFromTo(c, b) && graph.isDirectedFromTo(d, b)) { if (isArrowpointAllowed(a, b, knowledge)) { graph.setEndpoint(a, b, Endpoint.ARROW); TetradLogger.getInstance() .edgeOriented(SearchLogUtils.edgeOrientedMsg("Meek R3", graph.getEdge(a, b))); changed = true; break; } } } } } return changed; }
///////////////////////////////////////////////////////////////////////////// // set the sepSet of x and y to the minimal such subset of the given sepSet // and remove the edge <x, y> if background knowledge allows ///////////////////////////////////////////////////////////////////////////// private void setMinSepSet(List<Node> sepSet, Node x, Node y) { // It is assumed that BK has been considered before calling this method // (for example, setting independent1 and independent2 in ruleR0_RFCI) /* // background knowledge requires this edge if (knowledge.noEdgeRequired(x.getNode(), y.getNode())) { return; } */ List<Node> empty = Collections.emptyList(); boolean indep; try { indep = independenceTest.isIndependent(x, y, empty); } catch (Exception e) { indep = false; } if (indep) { getSepsets().set(x, y, empty); return; } int sepSetSize = sepSet.size(); for (int i = 1; i <= sepSetSize; i++) { ChoiceGenerator cg = new ChoiceGenerator(sepSetSize, i); int[] combination; while ((combination = cg.next()) != null) { List<Node> condSet = GraphUtils.asList(combination, sepSet); try { indep = independenceTest.isIndependent(x, y, condSet); } catch (Exception e) { indep = false; } if (indep) { getSepsets().set(x, y, condSet); return; } } } }
public static boolean existsLocalSepsetWithoutDet( Node x, Node y, Node z, IndependenceTest test, Graph graph, int depth) { Set<Node> __nodes = new HashSet<Node>(graph.getAdjacentNodes(x)); __nodes.addAll(graph.getAdjacentNodes(z)); __nodes.remove(x); __nodes.remove(z); List<Node> _nodes = new LinkedList<Node>(__nodes); TetradLogger.getInstance() .log("adjacencies", "Adjacents for " + x + "--" + y + "--" + z + " = " + _nodes); int _depth = depth; if (_depth == -1) { _depth = 1000; } _depth = Math.min(_depth, _nodes.size()); for (int d = 0; d <= _depth; d++) { if (_nodes.size() >= d) { ChoiceGenerator cg2 = new ChoiceGenerator(_nodes.size(), d); int[] choice; while ((choice = cg2.next()) != null) { List<Node> condSet = asList(choice, _nodes); if (condSet.contains(y)) { continue; } if (test.determines(condSet, y)) { continue; } // LogUtils.getInstance().finest("Trying " + condSet); if (test.isIndependent(x, z, condSet)) { return true; } } } } return false; }
/** * Step C of PC; orients colliders using specified sepset. That is, orients x *-* y *-* z as x *-> * y <-* z just in case y is in Sepset({x, z}). */ public static void orientCollidersUsingSepsets(SepsetMap set, Knowledge knowledge, Graph graph) { TetradLogger.getInstance().log("info", "Starting Collider Orientation:"); // verifySepsetIntegrity(set, graph); List<Node> nodes = graph.getNodes(); for (Node a : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(a); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node b = adjacentNodes.get(combination[0]); Node c = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (graph.isAdjacentTo(b, c)) { continue; } List<Node> sepset = set.get(b, c); if (sepset != null && !sepset.contains(a) && isArrowpointAllowed(b, a, knowledge) && isArrowpointAllowed(c, a, knowledge)) { graph.setEndpoint(b, a, Endpoint.ARROW); graph.setEndpoint(c, a, Endpoint.ARROW); TetradLogger.getInstance() .log("colliderOriented", SearchLogUtils.colliderOrientedMsg(b, a, c, sepset)); } } } TetradLogger.getInstance().log("info", "Finishing Collider Orientation."); }
/** If */ public static boolean meekR2(Graph graph, Knowledge knowledge) { List<Node> nodes = graph.getNodes(); boolean changed = false; for (Node a : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(a); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node b = adjacentNodes.get(combination[0]); Node c = adjacentNodes.get(combination[1]); if (graph.isDirectedFromTo(b, a) && graph.isDirectedFromTo(a, c) && graph.isUndirectedFromTo(b, c)) { if (isArrowpointAllowed(b, c, knowledge)) { graph.setEndpoint(b, c, Endpoint.ARROW); TetradLogger.getInstance() .edgeOriented(SearchLogUtils.edgeOrientedMsg("Meek R2", graph.getEdge(b, c))); } } else if (graph.isDirectedFromTo(c, a) && graph.isDirectedFromTo(a, b) && graph.isUndirectedFromTo(c, b)) { if (isArrowpointAllowed(c, b, knowledge)) { graph.setEndpoint(c, b, Endpoint.ARROW); TetradLogger.getInstance() .edgeOriented(SearchLogUtils.edgeOrientedMsg("Meek R2", graph.getEdge(c, b))); } } } } return changed; }
public static void orientCollidersLocally( Knowledge knowledge, Graph graph, IndependenceTest test, int depth, Set<Node> nodesToVisit) { TetradLogger.getInstance().log("info", "Starting Collider Orientation:"); if (nodesToVisit == null) { nodesToVisit = new HashSet<Node>(graph.getNodes()); } for (Node a : nodesToVisit) { List<Node> adjacentNodes = graph.getAdjacentNodes(a); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node b = adjacentNodes.get(combination[0]); Node c = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (graph.isAdjacentTo(b, c)) { continue; } if (isArrowpointAllowed1(b, a, knowledge) && isArrowpointAllowed1(c, a, knowledge)) { if (!existsLocalSepsetWith(b, a, c, test, graph, depth)) { graph.setEndpoint(b, a, Endpoint.ARROW); graph.setEndpoint(c, a, Endpoint.ARROW); TetradLogger.getInstance() .log("colliderOriented", SearchLogUtils.colliderOrientedMsg(b, a, c)); } } } } TetradLogger.getInstance().log("info", "Finishing Collider Orientation."); }
// Finds clusters of size 4 or higher. private Set<Set<Integer>> findPureClusters( List<Integer> _variables, Map<Node, Set<Node>> adjacencies) { // System.out.println("Original variables = " + variables); Set<Set<Integer>> clusters = new HashSet<Set<Integer>>(); List<Integer> allVariables = new ArrayList<Integer>(); for (int i = 0; i < this.variables.size(); i++) allVariables.add(i); VARIABLES: while (!_variables.isEmpty()) { if (_variables.size() < 4) break; for (int x : _variables) { Node nodeX = variables.get(x); List<Node> adjX = new ArrayList<Node>(adjacencies.get(nodeX)); adjX.retainAll(variablesForIndices(new ArrayList<Integer>(_variables))); for (Node node : new ArrayList<Node>(adjX)) { if (adjacencies.get(node).size() < 3) { adjX.remove(node); } } if (adjX.size() < 3) { continue; } ChoiceGenerator gen = new ChoiceGenerator(adjX.size(), 3); int[] choice; while ((choice = gen.next()) != null) { Node nodeY = adjX.get(choice[0]); Node nodeZ = adjX.get(choice[1]); Node nodeW = adjX.get(choice[2]); int y = variables.indexOf(nodeY); int w = variables.indexOf(nodeW); int z = variables.indexOf(nodeZ); Set<Integer> cluster = quartet(x, y, z, w); if (!clique(cluster, adjacencies)) { continue; } // Note that purity needs to be assessed with respect to all of the variables in order to // remove all latent-measure impurities between pairs of latents. if (pure(cluster, allVariables)) { // Collections.shuffle(_variables); O: for (int o : _variables) { if (cluster.contains(o)) continue; cluster.add(o); List<Integer> _cluster = new ArrayList<Integer>(cluster); if (!clique(cluster, adjacencies)) { cluster.remove(o); continue O; } // if (!allVariablesDependent(cluster)) { // cluster.remove(o); // continue O; // } ChoiceGenerator gen2 = new ChoiceGenerator(_cluster.size(), 4); int[] choice2; int count = 0; while ((choice2 = gen2.next()) != null) { int x2 = _cluster.get(choice2[0]); int y2 = _cluster.get(choice2[1]); int z2 = _cluster.get(choice2[2]); int w2 = _cluster.get(choice2[3]); Set<Integer> quartet = quartet(x2, y2, z2, w2); // Optimizes for large clusters. if (quartet.contains(o)) { if (++count > 50) continue O; } if (quartet.contains(o) && !pure(quartet, allVariables)) { cluster.remove(o); continue O; } } } System.out.println( "Cluster found: " + variablesForIndices(new ArrayList<Integer>(cluster))); clusters.add(cluster); _variables.removeAll(cluster); continue VARIABLES; } } } break; } return clusters; }
// Finds clusters of size 3. private Set<Set<Integer>> findMixedClusters( List<Integer> remaining, Set<Integer> unionPure, Map<Node, Set<Node>> adjacencies) { Set<Set<Integer>> threeClusters = new HashSet<Set<Integer>>(); if (unionPure.isEmpty()) { return new HashSet<Set<Integer>>(); } REMAINING: while (true) { if (remaining.size() < 3) break; ChoiceGenerator gen = new ChoiceGenerator(remaining.size(), 3); int[] choice; while ((choice = gen.next()) != null) { int y = remaining.get(choice[0]); int z = remaining.get(choice[1]); int w = remaining.get(choice[2]); Set<Integer> cluster = new HashSet<Integer>(); cluster.add(y); cluster.add(z); cluster.add(w); // if (!allVariablesDependent(cluster)) { // continue; // } if (!clique(cluster, adjacencies)) { continue; } // Check all x as a cross check; really only one should be necessary. boolean allX = true; for (int x : unionPure) { Set<Integer> _cluster = new HashSet<Integer>(cluster); _cluster.add(x); if (!quartetVanishes(_cluster) || !significant(new ArrayList<Integer>(_cluster))) { allX = false; break; } } if (allX) { threeClusters.add(cluster); unionPure.addAll(cluster); remaining.removeAll(cluster); System.out.println( "3-cluster found: " + variablesForIndices(new ArrayList<Integer>(cluster))); continue REMAINING; } } break; } return threeClusters; }
private Void findSeeds() { Tetrad tetrad = null; List<Node> empty = new ArrayList(); if (variables.size() < 4) { Set<Set<Integer>> ESeeds = new HashSet<Set<Integer>>(); } Map<Node, Set<Node>> adjacencies; if (depth == -2) { adjacencies = new HashMap<Node, Set<Node>>(); for (Node node : variables) { HashSet<Node> _nodes = new HashSet<Node>(variables); _nodes.remove(node); adjacencies.put(node, _nodes); } } else { // System.out.println("Running PC adjacency search..."); Graph graph = new EdgeListGraph(variables); Fas fas = new Fas(graph, indTest); fas.setVerbose(false); fas.setDepth(depth); // 1? adjacencies = fas.searchMapOnly(); // System.out.println("...done."); } List<Integer> allVariables = new ArrayList<Integer>(); for (int i = 0; i < variables.size(); i++) allVariables.add(i); log("Finding seeds.", true); ChoiceGenerator gen = new ChoiceGenerator(allVariables.size(), 3); int[] choice; CHOICE: while ((choice = gen.next()) != null) { int n1 = allVariables.get(choice[0]); int n2 = allVariables.get(choice[1]); int n3 = allVariables.get(choice[2]); Node v1 = variables.get(choice[0]); Node v2 = variables.get(choice[1]); Node v3 = variables.get(choice[2]); Set<Integer> triple = triple(n1, n2, n3); if (!clique(triple, adjacencies)) { continue; } boolean EPure = true; boolean CPure1 = true; boolean CPure2 = true; boolean CPure3 = true; for (int o : allVariables) { if (triple.contains(o)) { continue; } Node v4 = variables.get(o); tetrad = new Tetrad(v1, v2, v3, v4); if (deltaTest.getPValue(tetrad) > alpha) { EPure = false; if (indTest.isDependent(v1, v4, empty)) { CPure1 = false; } if (indTest.isDependent(v2, v4, empty)) { CPure2 = false; } } tetrad = new Tetrad(v1, v3, v2, v4); if (deltaTest.getPValue(tetrad) > alpha) { EPure = false; if (indTest.isDependent(v3, v4, empty)) { CPure3 = false; } } if (!(EPure || CPure1 || CPure2 || CPure3)) { continue CHOICE; } } HashSet<Integer> _cluster = new HashSet<Integer>(triple); if (verbose) { log("++" + variablesForIndices(new ArrayList<Integer>(triple)), false); } if (EPure) { ESeeds.add(_cluster); } if (!EPure) { if (CPure1) { Set<Integer> _cluster1 = new HashSet<Integer>(n2, n3); _cluster1.addAll(CSeeds.get(n1)); CSeeds.set(n1, _cluster1); } if (CPure2) { Set<Integer> _cluster2 = new HashSet<Integer>(n1, n3); _cluster2.addAll(CSeeds.get(n2)); CSeeds.set(n2, _cluster2); } if (CPure3) { Set<Integer> _cluster3 = new HashSet<Integer>(n1, n2); _cluster3.addAll(CSeeds.get(n3)); CSeeds.set(n3, _cluster3); } } } return null; }
public static CpcTripleType getCpcTripleType( Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph) { // System.out.println("getCpcTripleType 1"); boolean existsSepsetContainingY = false; boolean existsSepsetNotContainingY = false; Set<Node> __nodes = new HashSet<Node>(graph.getAdjacentNodes(x)); __nodes.remove(z); // System.out.println("getCpcTripleType 2"); List<Node> _nodes = new LinkedList<Node>(__nodes); TetradLogger.getInstance() .log("adjacencies", "Adjacents for " + x + "--" + y + "--" + z + " = " + _nodes); // System.out.println("getCpcTripleType 3"); int _depth = depth; if (_depth == -1) { _depth = 1000; } _depth = Math.min(_depth, _nodes.size()); // System.out.println("getCpcTripleType 4"); for (int d = 0; d <= _depth; d++) { // System.out.println("getCpcTripleType 5"); ChoiceGenerator cg = new ChoiceGenerator(_nodes.size(), d); int[] choice; while ((choice = cg.next()) != null) { // System.out.println("getCpcTripleType 6"); List<Node> condSet = GraphUtils.asList(choice, _nodes); // System.out.println("getCpcTripleType 7"); if (test.isIndependent(x, z, condSet)) { if (condSet.contains(y)) { existsSepsetContainingY = true; } else { existsSepsetNotContainingY = true; } } } } // System.out.println("getCpcTripleType 8"); __nodes = new HashSet<Node>(graph.getAdjacentNodes(z)); __nodes.remove(x); _nodes = new LinkedList<Node>(__nodes); TetradLogger.getInstance() .log("adjacencies", "Adjacents for " + x + "--" + y + "--" + z + " = " + _nodes); // System.out.println("getCpcTripleType 9"); _depth = depth; if (_depth == -1) { _depth = 1000; } _depth = Math.min(_depth, _nodes.size()); // System.out.println("getCpcTripleType 10"); for (int d = 0; d <= _depth; d++) { // System.out.println("getCpcTripleType 11"); ChoiceGenerator cg = new ChoiceGenerator(_nodes.size(), d); int[] choice; while ((choice = cg.next()) != null) { List<Node> condSet = GraphUtils.asList(choice, _nodes); if (test.isIndependent(x, z, condSet)) { if (condSet.contains(y)) { existsSepsetContainingY = true; } else { existsSepsetNotContainingY = true; } } } } // System.out.println("getCpcTripleType 12"); if (existsSepsetContainingY == existsSepsetNotContainingY) { return CpcTripleType.AMBIGUOUS; } else if (!existsSepsetNotContainingY) { return CpcTripleType.NONCOLLIDER; } else { return CpcTripleType.COLLIDER; } }
// Trying to optimize the search for 4-cliques a bit. private Set<Set<Integer>> findPureClusters2( List<Integer> _variables, Map<Node, Set<Node>> adjacencies) { System.out.println("Original variables = " + variables); Set<Set<Integer>> clusters = new HashSet<Set<Integer>>(); List<Integer> allVariables = new ArrayList<Integer>(); Set<Node> foundVariables = new HashSet<Node>(); for (int i = 0; i < this.variables.size(); i++) allVariables.add(i); for (int x : _variables) { Node nodeX = variables.get(x); if (foundVariables.contains(nodeX)) continue; List<Node> adjX = new ArrayList<Node>(adjacencies.get(nodeX)); adjX.removeAll(foundVariables); if (adjX.size() < 3) continue; for (Node nodeY : adjX) { if (foundVariables.contains(nodeY)) continue; List<Node> commonXY = new ArrayList<Node>(adjacencies.get(nodeY)); commonXY.retainAll(adjX); commonXY.removeAll(foundVariables); for (Node nodeZ : commonXY) { if (foundVariables.contains(nodeZ)) continue; List<Node> commonXZ = new ArrayList<Node>(commonXY); commonXZ.retainAll(adjacencies.get(nodeZ)); commonXZ.removeAll(foundVariables); for (Node nodeW : commonXZ) { if (foundVariables.contains(nodeW)) continue; if (!adjacencies.get(nodeY).contains(nodeW)) { continue; } int y = variables.indexOf(nodeY); int w = variables.indexOf(nodeW); int z = variables.indexOf(nodeZ); Set<Integer> cluster = quartet(x, y, z, w); // Note that purity needs to be assessed with respect to all of the variables in order // to // remove all latent-measure impurities between pairs of latents. if (pure(cluster, allVariables)) { O: for (int o : _variables) { if (cluster.contains(o)) continue; cluster.add(o); if (!clique(cluster, adjacencies)) { cluster.remove(o); continue O; } // if (!allVariablesDependent(cluster)) { // cluster.remove(o); // continue O; // } List<Integer> _cluster = new ArrayList<Integer>(cluster); ChoiceGenerator gen2 = new ChoiceGenerator(_cluster.size(), 4); int[] choice2; int count = 0; while ((choice2 = gen2.next()) != null) { int x2 = _cluster.get(choice2[0]); int y2 = _cluster.get(choice2[1]); int z2 = _cluster.get(choice2[2]); int w2 = _cluster.get(choice2[3]); Set<Integer> quartet = quartet(x2, y2, z2, w2); // Optimizes for large clusters. if (quartet.contains(o)) { if (++count > 2) continue O; } if (quartet.contains(o) && !pure(quartet, allVariables)) { cluster.remove(o); continue O; } } } System.out.println( "Cluster found: " + variablesForIndices(new ArrayList<Integer>(cluster))); clusters.add(cluster); foundVariables.addAll(variablesForIndices(new ArrayList<Integer>(cluster))); } } } } } return clusters; }
private Set<Set<Integer>> finishESeeds(Set<Set<Integer>> ESeeds) { log("Growing Effect Seeds.", true); Set<Set<Integer>> grown = new HashSet<Set<Integer>>(); List<Integer> _variables = new ArrayList<Integer>(); for (int i = 0; i < variables.size(); i++) _variables.add(i); // Lax grow phase with speedup. if (algType == AlgType.lax) { Set<Integer> t = new HashSet<Integer>(); int count = 0; int total = ESeeds.size(); do { if (!ESeeds.iterator().hasNext()) { break; } Set<Integer> cluster = ESeeds.iterator().next(); Set<Integer> _cluster = new HashSet<Integer>(cluster); if (extraShuffle) { Collections.shuffle(_variables); } for (int o : _variables) { if (_cluster.contains(o)) continue; List<Integer> _cluster2 = new ArrayList<Integer>(_cluster); int rejected = 0; int accepted = 0; ChoiceGenerator gen = new ChoiceGenerator(_cluster2.size(), 2); int[] choice; while ((choice = gen.next()) != null) { int n1 = _cluster2.get(choice[0]); int n2 = _cluster2.get(choice[1]); t.clear(); t.add(n1); t.add(n2); t.add(o); if (!ESeeds.contains(t)) { rejected++; } else { accepted++; } } if (rejected > accepted) { continue; } _cluster.add(o); // if (!(avgSumLnP(new ArrayList<Integer>(_cluster)) > -10)) { // _cluster.remove(o); // } } // This takes out all pure clusters that are subsets of _cluster. ChoiceGenerator gen2 = new ChoiceGenerator(_cluster.size(), 3); int[] choice2; List<Integer> _cluster3 = new ArrayList<Integer>(_cluster); while ((choice2 = gen2.next()) != null) { int n1 = _cluster3.get(choice2[0]); int n2 = _cluster3.get(choice2[1]); int n3 = _cluster3.get(choice2[2]); t.clear(); t.add(n1); t.add(n2); t.add(n3); ESeeds.remove(t); } if (verbose) { System.out.println( "Grown " + (++count) + " of " + total + ": " + variablesForIndices(new ArrayList<Integer>(_cluster))); } grown.add(_cluster); } while (!ESeeds.isEmpty()); } // Lax grow phase without speedup. if (algType == AlgType.laxWithSpeedup) { int count = 0; int total = ESeeds.size(); // Optimized lax version of grow phase. for (Set<Integer> cluster : new HashSet<Set<Integer>>(ESeeds)) { Set<Integer> _cluster = new HashSet<Integer>(cluster); if (extraShuffle) { Collections.shuffle(_variables); } for (int o : _variables) { if (_cluster.contains(o)) continue; List<Integer> _cluster2 = new ArrayList<Integer>(_cluster); int rejected = 0; int accepted = 0; // ChoiceGenerator gen = new ChoiceGenerator(_cluster2.size(), 2); int[] choice; while ((choice = gen.next()) != null) { int n1 = _cluster2.get(choice[0]); int n2 = _cluster2.get(choice[1]); Set<Integer> triple = triple(n1, n2, o); if (!ESeeds.contains(triple)) { rejected++; } else { accepted++; } } // if (rejected > accepted) { continue; } // System.out.println("Adding " + o + " to " + cluster); _cluster.add(o); } for (Set<Integer> c : new HashSet<Set<Integer>>(ESeeds)) { if (_cluster.containsAll(c)) { ESeeds.remove(c); } } if (verbose) { System.out.println("Grown " + (++count) + " of " + total + ": " + _cluster); } grown.add(_cluster); } } // Strict grow phase. if (algType == AlgType.strict) { Set<Integer> t = new HashSet<Integer>(); int count = 0; int total = ESeeds.size(); do { if (!ESeeds.iterator().hasNext()) { break; } Set<Integer> cluster = ESeeds.iterator().next(); Set<Integer> _cluster = new HashSet<Integer>(cluster); if (extraShuffle) { Collections.shuffle(_variables); } VARIABLES: for (int o : _variables) { if (_cluster.contains(o)) continue; List<Integer> _cluster2 = new ArrayList<Integer>(_cluster); ChoiceGenerator gen = new ChoiceGenerator(_cluster2.size(), 2); int[] choice; while ((choice = gen.next()) != null) { int n1 = _cluster2.get(choice[0]); int n2 = _cluster2.get(choice[1]); t.clear(); t.add(n1); t.add(n2); t.add(o); if (!ESeeds.contains(t)) { continue VARIABLES; } // if (avgSumLnP(new ArrayList<Integer>(t)) < -10) continue // CLUSTER; } _cluster.add(o); } // This takes out all pure clusters that are subsets of _cluster. ChoiceGenerator gen2 = new ChoiceGenerator(_cluster.size(), 3); int[] choice2; List<Integer> _cluster3 = new ArrayList<Integer>(_cluster); while ((choice2 = gen2.next()) != null) { int n1 = _cluster3.get(choice2[0]); int n2 = _cluster3.get(choice2[1]); int n3 = _cluster3.get(choice2[2]); t.clear(); t.add(n1); t.add(n2); t.add(n3); ESeeds.remove(t); } if (verbose) { System.out.println("Grown " + (++count) + " of " + total + ": " + _cluster); } grown.add(_cluster); } while (!ESeeds.isEmpty()); } // Optimized pick phase. log("Choosing among grown Effect Clusters.", true); for (Set<Integer> l : grown) { ArrayList<Integer> _l = new ArrayList<Integer>(l); Collections.sort(_l); if (verbose) { log("Grown: " + variablesForIndices(_l), false); } } Set<Set<Integer>> out = new HashSet<Set<Integer>>(); List<Set<Integer>> list = new ArrayList<Set<Integer>>(grown); // final Map<Set<Integer>, Double> pValues = new HashMap<Set<Integer>, Double>(); // // for (Set<Integer> o : grown) { // pValues.put(o, getP(new ArrayList<Integer>(o))); // } Collections.sort( list, new Comparator<Set<Integer>>() { @Override public int compare(Set<Integer> o1, Set<Integer> o2) { // if (o1.size() == o2.size()) { // double chisq1 = pValues.get(o1); // double chisq2 = pValues.get(o2); // return Double.compare(chisq2, chisq1); // } return o2.size() - o1.size(); } }); // for (Set<Integer> o : list) { // if (pValues.get(o) < alpha) continue; // System.out.println(variablesForIndices(new ArrayList<Integer>(o)) + " p = " + // pValues.get(o)); // } Set<Integer> all = new HashSet<Integer>(); CLUSTER: for (Set<Integer> cluster : list) { // if (pValues.get(cluster) < alpha) continue; for (Integer i : cluster) { if (all.contains(i)) continue CLUSTER; } out.add(cluster); // if (getPMulticluster(out) < alpha) { // out.remove(cluster); // continue; // } all.addAll(cluster); } return out; }
/** * Calculates the error variance for the given error node, given all of the coefficient values in * the model. * * @param error An error term in the model--i.e. a variable with NodeType.ERROR. * @return The value of the error variance, or Double.NaN is the value is undefined. */ private double calculateErrorVarianceFromParams(Node error) { error = semGraph.getNode(error.getName()); Node child = semGraph.getChildren(error).get(0); List<Node> parents = semGraph.getParents(child); double otherVariance = 0; for (Node parent : parents) { if (parent == error) continue; double coef = getEdgeCoefficient(parent, child); otherVariance += coef * coef; } if (parents.size() >= 2) { ChoiceGenerator gen = new ChoiceGenerator(parents.size(), 2); int[] indices; while ((indices = gen.next()) != null) { Node node1 = parents.get(indices[0]); Node node2 = parents.get(indices[1]); double coef1, coef2; if (node1.getNodeType() != NodeType.ERROR) { coef1 = getEdgeCoefficient(node1, child); } else { coef1 = 1; } if (node2.getNodeType() != NodeType.ERROR) { coef2 = getEdgeCoefficient(node2, child); } else { coef2 = 1; } List<List<Node>> treks = GraphUtils.treksIncludingBidirected(semGraph, node1, node2); double cov = 0.0; for (List<Node> trek : treks) { double product = 1.0; for (int i = 1; i < trek.size(); i++) { Node _node1 = trek.get(i - 1); Node _node2 = trek.get(i); Edge edge = semGraph.getEdge(_node1, _node2); double factor; if (Edges.isBidirectedEdge(edge)) { factor = edgeParameters.get(edge); } else if (!edgeParameters.containsKey(edge)) { factor = 1; } else if (semGraph.isParentOf(_node1, _node2)) { factor = getEdgeCoefficient(_node1, _node2); } else { factor = getEdgeCoefficient(_node2, _node1); } product *= factor; } cov += product; } otherVariance += 2 * coef1 * coef2 * cov; } } return 1.0 - otherVariance <= 0 ? Double.NaN : 1.0 - otherVariance; }