public static void testManualDiscretize() { Node x = new ContinuousVariable("X"); List<Node> nodes = Collections.singletonList(x); DataSet data = new ColtDataSet(9, nodes); data.setDouble(0, 0, 13.0); data.setDouble(1, 0, 1.2); data.setDouble(2, 0, 2.2); data.setDouble(3, 0, 4.5); data.setDouble(4, 0, 12.005); data.setDouble(5, 0, 5.5); data.setDouble(6, 0, 10.1); data.setDouble(7, 0, 7.5); data.setDouble(8, 0, 3.4); System.out.println(data); Discretizer discretizer = new Discretizer(data); discretizer.setVariablesCopied(true); discretizer.equalCounts(x, 3); DataSet discretized = discretizer.discretize(); System.out.println(discretized); assertEquals(discretized.getInt(0, 0), 2); assertEquals(discretized.getInt(1, 0), 0); assertEquals(discretized.getInt(2, 0), 0); assertEquals(discretized.getInt(3, 0), 1); assertEquals(discretized.getInt(4, 0), 2); assertEquals(discretized.getInt(5, 0), 1); assertEquals(discretized.getInt(6, 0), 2); assertEquals(discretized.getInt(7, 0), 1); assertEquals(discretized.getInt(8, 0), 0); }
/* * @param dataSet A discrete data set. * @param column the column in question. * @return the max value in that column. */ private int maxInColumn(DataSet dataSet, int column) { int max = -1; for (int i = 0; i < dataSet.getNumRows(); i++) { int value = dataSet.getInt(i, column); if (value > max) max = value; } return max; }
/** * @return the estimated conditional probability for the given assertion conditional on the given * condition. */ public double getConditionalProb(Proposition assertion, Proposition condition) { if (assertion.getVariableSource() != condition.getVariableSource()) { throw new IllegalArgumentException( "Assertion and condition must be " + "for the same Bayes IM."); } List<Node> assertionVars = assertion.getVariableSource().getVariables(); List<Node> dataVars = dataSet.getVariables(); assertionVars = GraphUtils.replaceNodes(assertionVars, dataVars); if (!new HashSet<Node>(assertionVars).equals(new HashSet<Node>(dataVars))) { throw new IllegalArgumentException( "Assertion variable and data variables" + " are either different or in a different order: " + "\n\tAssertion vars: " + assertionVars + "\n\tData vars: " + dataVars); } int[] point = new int[dims.length]; int count1 = 0; int count2 = 0; this.missingValueCaseFound = false; point: for (int i = 0; i < numRows; i++) { for (int j = 0; j < dims.length; j++) { point[j] = dataSet.getInt(i, j); if (point[j] == DiscreteVariable.MISSING_VALUE) { continue point; } } if (condition.isPermissibleCombination(point)) { count1++; if (assertion.isPermissibleCombination(point)) { count2++; } } } return count2 / (double) count1; }
private boolean isMissing(Node x, int i) { int j = internalData.getColumn(x); if (x instanceof DiscreteVariable) { int v = internalData.getInt(i, j); if (v == -99) { return true; } } if (x instanceof ContinuousVariable) { double v = internalData.getDouble(i, j); if (Double.isNaN(v)) { return true; } } return false; }
/** @return the estimated probability of the given proposition. */ public double getProb(Proposition assertion) { int[] point = new int[dims.length]; int count = 0; this.missingValueCaseFound = false; point: for (int i = 0; i < numRows; i++) { for (int j = 0; j < dims.length; j++) { point[j] = dataSet.getInt(i, j); if (point[j] == DiscreteVariable.MISSING_VALUE) { this.missingValueCaseFound = true; continue point; } } if (assertion.isPermissibleCombination(point)) { count++; } } return count / (double) this.numRows; }
/** * @return the estimated probability for the given cell. The order of the variable values is the * order of the variables in getVariable(). */ public double getCellProb(int[] variableValues) { int[] point = new int[dims.length]; int count = 0; this.missingValueCaseFound = false; point: for (int i = 0; i < numRows; i++) { for (int j = 0; j < dims.length; j++) { point[j] = dataSet.getInt(i, j); if (point[j] == DiscreteVariable.MISSING_VALUE) { this.missingValueCaseFound = true; continue point; } } if (Arrays.equals(point, variableValues)) { count++; } } return count / (double) this.numRows; }
private void createDiscreteTimeSeriesData() { // GIVEN: Continuous data set D, maximum lag m. Node[] dataVars = dataSet.getVariables().toArray(new Node[0]); int n = dataVars.length; int m = getNumLags(); // LetXi, i = 0,...,n-1, be the variables from the data. Let Xi(t) be // the variable Xi at time lag t (before 0), t = 0,...,m. Node[][] laggedVars = new Node[m + 1][n]; Knowledge knowledge = new Knowledge(); for (int s = 0; s <= m; s++) { for (int j = 0; j < n; j++) { String name1 = dataVars[j].getName(); String name2 = name1 + "." + (s + 1); laggedVars[s][j] = new DiscreteVariable((DiscreteVariable) dataVars[j]); laggedVars[s][j].setName(name2); laggedVars[s][j].setCenter(80 * j + 50, 80 * (m - s) + 50); knowledge.addToTier(s, laggedVars[s][j].getName()); } } // 2. Prepare the data the way you did. List<Node> variables = new LinkedList<Node>(); for (int s = 0; s <= m; s++) { for (int i = 0; i < n; i++) { int[] rawData = new int[dataSet.getNumRows()]; for (int j = 0; j < dataSet.getNumRows(); j++) { rawData[j] = dataSet.getInt(j, i); } int size = dataSet.getNumRows(); int[] laggedRaw = new int[size - m + 1]; System.arraycopy(rawData, m - s, laggedRaw, 0, size - m + 1); variables.add(laggedVars[s][i]); } } DataSet _laggedData = new ColtDataSet(dataSet.getNumRows() - m + 1, variables); for (int s = 0; s <= m; s++) { for (int i = 0; i < n; i++) { int[] rawData = new int[dataSet.getNumRows()]; for (int j = 0; j < dataSet.getNumRows(); j++) { rawData[j] = dataSet.getInt(j, i); } int size = dataSet.getNumRows(); int[] laggedRaw = new int[size - m + 1]; System.arraycopy(rawData, m - s, laggedRaw, 0, size - m + 1); int _col = _laggedData.getColumn(laggedVars[s][i]); for (int j = 0; j < dataSet.getNumRows(); j++) { _laggedData.setInt(j, _col, laggedRaw[j]); } } } knowledge.setDefaultToKnowledgeLayout(true); _laggedData.setKnowledge(knowledge); DataModelList list = new DataModelList(); list.add(_laggedData); getDataEditor().reset(list); getDataEditor().selectLastTab(); }
/** * This method takes an instantiated Bayes net (BayesIm) whose graph include all the variables * (observed and latent) and computes estimated counts using the data in the DataSet mixedData. * The counts that are estimated correspond to cells in the conditional probability tables of the * Bayes net. The outermost loop (indexed by j) is over the set of variables. If the variable has * no parents, each case in the dataset is examined and the count for the observed value of the * variables is increased by 1.0; if the value of the variable is missing the marginal * probabilities its values given the values of the variables that are available for that case are * used to increment the corresponding estimated counts. If a variable has parents then there is a * loop which steps through all possible sets of values of its parents. This loop is indexed by * the variable "row". Each case in the dataset is examined. It the variable and all its parents * have values in the case the corresponding estimated counts are incremented by 1.0. If the * variable or any of its parents have missing values, the joint marginal is computed for the * variable and the set of values of its parents corresponding to "row" and the corresponding * estimated counts are incremented by the appropriate probability. The estimated counts are * stored in the double[][][] array estimatedCounts. The count (possibly fractional) of the number * of times each combination of parent values occurs is stored in the double[][] array * estimatedCountsDenom. These two arrays are used to compute the estimated conditional * probabilities of the output Bayes net. */ private BayesIm expectation(BayesIm inputBayesIm) { // System.out.println("Entered method expectation."); int numCases = mixedData.getNumRows(); // StoredCellEstCounts estCounts = new StoredCellEstCounts(variables); int numVariables = allVariables.size(); RowSummingExactUpdater rseu = new RowSummingExactUpdater(inputBayesIm); for (int j = 0; j < numVariables; j++) { DiscreteVariable var = (DiscreteVariable) allVariables.get(j); String varName = var.getName(); Node varNode = graph.getNode(varName); int varIndex = inputBayesIm.getNodeIndex(varNode); int[] parentVarIndices = inputBayesIm.getParents(varIndex); // System.out.println("graph = " + graph); // for(int col = 0; col < var.getNumSplits(); col++) // System.out.println("Category " + col + " = " + var.getCategory(col)); // System.out.println("Updating estimated counts for node " + varName); // This segment is for variables with no parents: if (parentVarIndices.length == 0) { // System.out.println("No parents"); for (int col = 0; col < var.getNumCategories(); col++) { estimatedCounts[j][0][col] = 0.0; } for (int i = 0; i < numCases; i++) { // System.out.println("Case " + i); // If this case has a value for var if (mixedData.getInt(i, j) != -99) { estimatedCounts[j][0][mixedData.getInt(i, j)] += 1.0; // System.out.println("Adding 1.0 to " + varName + // " row 0 category " + mixedData[j][i]); } else { // find marginal probability, given obs data in this case, p(v=0) Evidence evidenceThisCase = Evidence.tautology(inputBayesIm); boolean existsEvidence = false; // Define evidence for updating by using the values of the other vars. for (int k = 0; k < numVariables; k++) { if (k == j) { continue; } Node otherVar = allVariables.get(k); if (mixedData.getInt(i, k) == -99) { continue; } existsEvidence = true; String otherVarName = otherVar.getName(); Node otherNode = graph.getNode(otherVarName); int otherIndex = inputBayesIm.getNodeIndex(otherNode); evidenceThisCase.getProposition().setCategory(otherIndex, mixedData.getInt(i, k)); } if (!existsEvidence) { continue; // No other variable contained useful data } rseu.setEvidence(evidenceThisCase); for (int m = 0; m < var.getNumCategories(); m++) { estimatedCounts[j][0][m] += rseu.getMarginal(varIndex, m); // System.out.println("Adding " + p + " to " + varName + // " row 0 category " + m); // find marginal probability, given obs data in this case, p(v=1) // estimatedCounts[j][0][1] += 0.5; } } } // Print estimated counts: // System.out.println("Estimated counts: "); // Print counts for each value of this variable with no parents. // for(int m = 0; m < var.getNumSplits(); m++) // System.out.print(" " + m + " " + estimatedCounts[j][0][m]); // System.out.println(); } else { // For variables with parents: int numRows = inputBayesIm.getNumRows(varIndex); for (int row = 0; row < numRows; row++) { int[] parValues = inputBayesIm.getParentValues(varIndex, row); estimatedCountsDenom[varIndex][row] = 0.0; for (int col = 0; col < var.getNumCategories(); col++) { estimatedCounts[varIndex][row][col] = 0.0; } for (int i = 0; i < numCases; i++) { // for a case where the parent values = parValues increment the estCount boolean parentMatch = true; for (int p = 0; p < parentVarIndices.length; p++) { if (parValues[p] != mixedData.getInt(i, parentVarIndices[p]) && mixedData.getInt(i, parentVarIndices[p]) != -99) { parentMatch = false; break; } } if (!parentMatch) { continue; // Not a matching case; go to next. } boolean parentMissing = false; for (int parentVarIndice : parentVarIndices) { if (mixedData.getInt(i, parentVarIndice) == -99) { parentMissing = true; break; } } if (mixedData.getInt(i, j) != -99 && !parentMissing) { estimatedCounts[j][row][mixedData.getInt(i, j)] += 1.0; estimatedCountsDenom[j][row] += 1.0; continue; // Next case } // for a case with missing data (either var or one of its parents) // compute the joint marginal // distribution for var & this combination of values of its parents // and update the estCounts accordingly // To compute marginals create the evidence boolean existsEvidence = false; Evidence evidenceThisCase = Evidence.tautology(inputBayesIm); // "evidenceVars" not used. // List<String> evidenceVars = new LinkedList<String>(); // for (int k = 0; k < numVariables; k++) { // //if(k == j) continue; // Variable otherVar = allVariables.get(k); // if (mixedData.getInt(i, k) == -99) { // continue; // } // existsEvidence = true; // String otherVarName = otherVar.getName(); // Node otherNode = graph.getNode(otherVarName); // int otherIndex = inputBayesIm.getNodeIndex( // otherNode); // evidenceThisCase.getProposition().setCategory( // otherIndex, mixedData.getInt(i, k)); // evidenceVars.add(otherVarName); // } if (!existsEvidence) { continue; } rseu.setEvidence(evidenceThisCase); estimatedCountsDenom[j][row] += rseu.getJointMarginal(parentVarIndices, parValues); int[] parPlusChildIndices = new int[parentVarIndices.length + 1]; int[] parPlusChildValues = new int[parentVarIndices.length + 1]; parPlusChildIndices[0] = varIndex; for (int pc = 1; pc < parPlusChildIndices.length; pc++) { parPlusChildIndices[pc] = parentVarIndices[pc - 1]; parPlusChildValues[pc] = parValues[pc - 1]; } for (int m = 0; m < var.getNumCategories(); m++) { parPlusChildValues[0] = m; /* if(varName.equals("X1") && i == 0 ) { System.out.println("Calling getJointMarginal with parvalues"); for(int k = 0; k < parPlusChildIndices.length; k++) { int pIndex = parPlusChildIndices[k]; Node pNode = inputBayesIm.getNode(pIndex); String pName = pNode.getName(); System.out.println(pName + " " + parPlusChildValues[k]); } } */ /* if(varName.equals("X1") && i == 0 ) { System.out.println("Evidence = " + evidenceThisCase); //int[] vars = {l1Index, x1Index}; Node nodex1 = inputBayesIm.getNode("X1"); int x1Index = inputBayesIm.getNodeIndex(nodex1); Node nodel1 = inputBayesIm.getNode("L1"); int l1Index = inputBayesIm.getNodeIndex(nodel1); int[] vars = {l1Index, x1Index}; int[] vals = {0, 0}; double ptest = rseu.getJointMarginal(vars, vals); System.out.println("Joint marginal (X1=0, L1 = 0) = " + p); } */ estimatedCounts[j][row][m] += rseu.getJointMarginal(parPlusChildIndices, parPlusChildValues); // System.out.println("Case " + i + " parent values "); // for (int pp = 0; pp < parentVarIndices.length; pp++) { // Variable par = (Variable) allVariables.get(parentVarIndices[pp]); // System.out.print(" " + par.getName() + " " + parValues[pp]); // } // System.out.println(); // System.out.println("Adding " + p + " to " + varName + // " row " + row + " category " + m); } // } } // Print estimated counts: // System.out.println("Estimated counts: "); // System.out.println(" Parent values: "); // for (int i = 0; i < parentVarIndices.length; i++) { // Variable par = (Variable) allVariables.get(parentVarIndices[i]); // System.out.print(" " + par.getName() + " " + parValues[i] + " "); // } // System.out.println(); // for(int m = 0; m < var.getNumSplits(); m++) // System.out.print(" " + m + " " + estimatedCounts[j][row][m]); // System.out.println(); } } // else } // j < numVariables BayesIm outputBayesIm = new MlBayesIm(bayesPm); for (int j = 0; j < nodes.length; j++) { DiscreteVariable var = (DiscreteVariable) allVariables.get(j); String varName = var.getName(); Node varNode = graph.getNode(varName); int varIndex = inputBayesIm.getNodeIndex(varNode); // int[] parentVarIndices = inputBayesIm.getParents(varIndex); int numRows = inputBayesIm.getNumRows(j); // System.out.println("Conditional probabilities for variable " + varName); int numCols = inputBayesIm.getNumColumns(j); if (numRows == 1) { double sum = 0.0; for (int m = 0; m < numCols; m++) { sum += estimatedCounts[j][0][m]; } for (int m = 0; m < numCols; m++) { condProbs[j][0][m] = estimatedCounts[j][0][m] / sum; // System.out.print(" " + condProbs[j][0][m]); outputBayesIm.setProbability(varIndex, 0, m, condProbs[j][0][m]); } // System.out.println(); } else { for (int row = 0; row < numRows; row++) { // int[] parValues = inputBayesIm.getParentValues(varIndex, // row); // int numCols = inputBayesIm.getNumColumns(j); // for (int p = 0; p < parentVarIndices.length; p++) { // Variable par = (Variable) allVariables.get(parentVarIndices[p]); // System.out.print(" " + par.getName() + " " + parValues[p]); // } // double sum = 0.0; // for(int m = 0; m < numCols; m++) // sum += estimatedCounts[j][row][m]; for (int m = 0; m < numCols; m++) { if (estimatedCountsDenom[j][row] != 0.0) { condProbs[j][row][m] = estimatedCounts[j][row][m] / estimatedCountsDenom[j][row]; } else { condProbs[j][row][m] = Double.NaN; } // System.out.print(" " + condProbs[j][row][m]); outputBayesIm.setProbability(varIndex, row, m, condProbs[j][row][m]); } // System.out.println(); } } } return outputBayesIm; }
private void initialize() { DirichletBayesIm prior = DirichletBayesIm.symmetricDirichletIm(bayesPmObs, 0.5); observedIm = DirichletEstimator.estimate(prior, dataSet); // MLBayesEstimator dirichEst = new MLBayesEstimator(); // observedIm = dirichEst.estimate(bayesPmObs, dataSet); // System.out.println("Estimated Bayes IM for Measured Variables: "); // System.out.println(observedIm); // mixedData should be ddsNm with new columns for the latent variables. // Each such column should contain missing data for each case. int numFullCases = dataSet.getNumRows(); List<Node> variables = new LinkedList<Node>(); for (Node node : nodes) { if (node.getNodeType() == NodeType.LATENT) { int numCategories = bayesPm.getNumCategories(node); DiscreteVariable latentVar = new DiscreteVariable(node.getName(), numCategories); variables.add(latentVar); } else { String name = bayesPm.getVariable(node).getName(); Node variable = dataSet.getVariable(name); variables.add(variable); } } DataSet dsMixed = new ColtDataSet(numFullCases, variables); for (int j = 0; j < nodes.length; j++) { if (nodes[j].getNodeType() == NodeType.LATENT) { for (int i = 0; i < numFullCases; i++) { dsMixed.setInt(i, j, -99); } } else { String name = bayesPm.getVariable(nodes[j]).getName(); Node variable = dataSet.getVariable(name); int index = dataSet.getColumn(variable); for (int i = 0; i < numFullCases; i++) { dsMixed.setInt(i, j, dataSet.getInt(i, index)); } } } // System.out.println(dsMixed); mixedData = dsMixed; allVariables = mixedData.getVariables(); // Find the bayes net which is parameterized using mixedData or set randomly when that's // not possible. estimateIM(bayesPm, mixedData); // The following DEBUG section tests a case specified by P. Spirtes // DEBUG TAIL: For use with embayes_l1x1x2x3V3.dat /* Node l1Node = graph.getNode("L1"); //int l1Index = bayesImMixed.getNodeIndex(l1Node); int l1index = estimatedIm.getNodeIndex(l1Node); Node x1Node = graph.getNode("X1"); //int x1Index = bayesImMixed.getNodeIndex(x1Node); int x1Index = estimatedIm.getNodeIndex(x1Node); Node x2Node = graph.getNode("X2"); //int x2Index = bayesImMixed.getNodeIndex(x2Node); int x2Index = estimatedIm.getNodeIndex(x2Node); Node x3Node = graph.getNode("X3"); //int x3Index = bayesImMixed.getNodeIndex(x3Node); int x3Index = estimatedIm.getNodeIndex(x3Node); estimatedIm.setProbability(l1index, 0, 0, 0.5); estimatedIm.setProbability(l1index, 0, 1, 0.5); //bayesImMixed.setProbability(x1Index, 0, 0, 0.33333); //bayesImMixed.setProbability(x1Index, 0, 1, 0.66667); estimatedIm.setProbability(x1Index, 0, 0, 0.6); //p(x1 = 0 | l1 = 0) estimatedIm.setProbability(x1Index, 0, 1, 0.4); //p(x1 = 1 | l1 = 0) estimatedIm.setProbability(x1Index, 1, 0, 0.4); //p(x1 = 0 | l1 = 1) estimatedIm.setProbability(x1Index, 1, 1, 0.6); //p(x1 = 1 | l1 = 1) //bayesImMixed.setProbability(x2Index, 1, 0, 0.66667); //bayesImMixed.setProbability(x2Index, 1, 1, 0.33333); estimatedIm.setProbability(x2Index, 1, 0, 0.4); //p(x2 = 0 | l1 = 1) estimatedIm.setProbability(x2Index, 1, 1, 0.6); //p(x2 = 1 | l1 = 1) estimatedIm.setProbability(x2Index, 0, 0, 0.6); //p(x2 = 0 | l1 = 0) estimatedIm.setProbability(x2Index, 0, 1, 0.4); //p(x2 = 1 | l1 = 0) //bayesImMixed.setProbability(x3Index, 1, 0, 0.66667); //bayesImMixed.setProbability(x3Index, 1, 1, 0.33333); estimatedIm.setProbability(x3Index, 1, 0, 0.4); //p(x3 = 0 | l1 = 1) estimatedIm.setProbability(x3Index, 1, 1, 0.6); //p(x3 = 1 | l1 = 1) estimatedIm.setProbability(x3Index, 0, 0, 0.6); //p(x3 = 0 | l1 = 0) estimatedIm.setProbability(x3Index, 0, 1, 0.4); //p(x3 = 1 | l1 = 0) */ // END of TAIL // System.out.println("bayes IM estimated by estimateIM"); // System.out.println(bayesImMixed); // System.out.println(estimatedIm); estimatedCounts = new double[nodes.length][][]; estimatedCountsDenom = new double[nodes.length][]; condProbs = new double[nodes.length][][]; for (int i = 0; i < nodes.length; i++) { // int numRows = bayesImMixed.getNumRows(i); int numRows = estimatedIm.getNumRows(i); estimatedCounts[i] = new double[numRows][]; estimatedCountsDenom[i] = new double[numRows]; condProbs[i] = new double[numRows][]; // for(int j = 0; j < bayesImMixed.getNumRows(i); j++) { for (int j = 0; j < estimatedIm.getNumRows(i); j++) { // int numCols = bayesImMixed.getNumColumns(i); int numCols = estimatedIm.getNumColumns(i); estimatedCounts[i][j] = new double[numCols]; condProbs[i][j] = new double[numCols]; } } }
public final DataSet filter(DataSet dataSet) { // Why does it have to be discrete? Why can't we simply expand // whatever discrete columns are there and leave the continuous // ones untouched? jdramsey 7/4/2005 // if (!(dataSet.isDiscrete())) { // throw new IllegalArgumentException("Data set must be discrete."); // } List<Node> variables = new LinkedList<>(); // Add all of the variables to the new data set. for (int j = 0; j < dataSet.getNumColumns(); j++) { Node _var = dataSet.getVariable(j); if (!(_var instanceof DiscreteVariable)) { variables.add(_var); continue; } DiscreteVariable variable = (DiscreteVariable) _var; String oldName = variable.getName(); List<String> oldCategories = variable.getCategories(); List<String> newCategories = new LinkedList<>(oldCategories); String newCategory = "Missing"; int _j = 0; while (oldCategories.contains(newCategory)) { newCategory = "Missing" + (++_j); } newCategories.add(newCategory); String newName = oldName + "+"; DiscreteVariable newVariable = new DiscreteVariable(newName, newCategories); variables.add(newVariable); } DataSet newDataSet = new ColtDataSet(dataSet.getNumRows(), variables); // Copy old values to new data set, replacing missing values with new // "MissingValue" categories. for (int j = 0; j < dataSet.getNumColumns(); j++) { Node _var = dataSet.getVariable(j); if (_var instanceof ContinuousVariable) { for (int i = 0; i < dataSet.getNumRows(); i++) { newDataSet.setDouble(i, j, dataSet.getDouble(i, j)); } } else if (_var instanceof DiscreteVariable) { DiscreteVariable variable = (DiscreteVariable) _var; int numCategories = variable.getNumCategories(); for (int i = 0; i < dataSet.getNumRows(); i++) { int value = dataSet.getInt(i, j); if (value == DiscreteVariable.MISSING_VALUE) { newDataSet.setInt(i, j, numCategories); } else { newDataSet.setInt(i, j, value); } } } } return newDataSet; }