@Test public void test2() { RandomUtil.getInstance().setSeed(2999983L); int sampleSize = 1000; List<Node> variableNodes = new ArrayList<>(); ContinuousVariable x1 = new ContinuousVariable("X1"); ContinuousVariable x2 = new ContinuousVariable("X2"); ContinuousVariable x3 = new ContinuousVariable("X3"); ContinuousVariable x4 = new ContinuousVariable("X4"); ContinuousVariable x5 = new ContinuousVariable("X5"); variableNodes.add(x1); variableNodes.add(x2); variableNodes.add(x3); variableNodes.add(x4); variableNodes.add(x5); Graph _graph = new EdgeListGraph(variableNodes); SemGraph graph = new SemGraph(_graph); graph.addDirectedEdge(x1, x3); graph.addDirectedEdge(x2, x3); graph.addDirectedEdge(x3, x4); graph.addDirectedEdge(x2, x4); graph.addDirectedEdge(x4, x5); graph.addDirectedEdge(x2, x5); SemPm semPm = new SemPm(graph); SemIm semIm = new SemIm(semPm); DataSet dataSet = semIm.simulateData(sampleSize, false); print(semPm); GeneralizedSemPm _semPm = new GeneralizedSemPm(semPm); GeneralizedSemIm _semIm = new GeneralizedSemIm(_semPm, semIm); DataSet _dataSet = _semIm.simulateDataMinimizeSurface(sampleSize, false); print(_semPm); // System.out.println(_dataSet); for (int j = 0; j < dataSet.getNumColumns(); j++) { double[] col = dataSet.getDoubleData().getColumn(j).toArray(); double[] _col = _dataSet.getDoubleData().getColumn(j).toArray(); double mean = StatUtils.mean(col); double _mean = StatUtils.mean(_col); double variance = StatUtils.variance(col); double _variance = StatUtils.variance(_col); assertEquals(mean, _mean, 0.3); assertEquals(1.0, variance / _variance, .2); } }
public IndTestFisherZPercentIndependent(List<DataSet> dataSets, double alpha) { this.dataSets = dataSets; this.variables = dataSets.get(0).getVariables(); data = new ArrayList<TetradMatrix>(); for (DataSet dataSet : dataSets) { dataSet = DataUtils.center(dataSet); TetradMatrix _data = dataSet.getDoubleData(); data.add(_data); } ncov = new ArrayList<TetradMatrix>(); for (TetradMatrix d : this.data) ncov.add(d.transpose().times(d).scalarMult(1.0 / d.rows())); setAlpha(alpha); rows = new int[dataSets.get(0).getNumRows()]; for (int i = 0; i < getRows().length; i++) getRows()[i] = i; variablesMap = new HashMap<Node, Integer>(); for (int i = 0; i < variables.size(); i++) { variablesMap.put(variables.get(i), i); } this.recursivePartialCorrelation = new ArrayList<RecursivePartialCorrelation>(); for (TetradMatrix covMatrix : ncov) { recursivePartialCorrelation.add(new RecursivePartialCorrelation(getVariables(), covMatrix)); } }
@Test public void test3() { RandomUtil.getInstance().setSeed(49293843L); List<Node> variableNodes = new ArrayList<>(); ContinuousVariable x1 = new ContinuousVariable("X1"); ContinuousVariable x2 = new ContinuousVariable("X2"); ContinuousVariable x3 = new ContinuousVariable("X3"); ContinuousVariable x4 = new ContinuousVariable("X4"); ContinuousVariable x5 = new ContinuousVariable("X5"); variableNodes.add(x1); variableNodes.add(x2); variableNodes.add(x3); variableNodes.add(x4); variableNodes.add(x5); Graph _graph = new EdgeListGraph(variableNodes); SemGraph graph = new SemGraph(_graph); graph.setShowErrorTerms(true); Node e1 = graph.getExogenous(x1); Node e2 = graph.getExogenous(x2); Node e3 = graph.getExogenous(x3); Node e4 = graph.getExogenous(x4); Node e5 = graph.getExogenous(x5); graph.addDirectedEdge(x1, x3); graph.addDirectedEdge(x1, x2); graph.addDirectedEdge(x2, x3); graph.addDirectedEdge(x3, x4); graph.addDirectedEdge(x2, x4); graph.addDirectedEdge(x4, x5); graph.addDirectedEdge(x2, x5); graph.addDirectedEdge(x5, x1); GeneralizedSemPm pm = new GeneralizedSemPm(graph); List<Node> variablesNodes = pm.getVariableNodes(); print(variablesNodes); List<Node> errorNodes = pm.getErrorNodes(); print(errorNodes); try { pm.setNodeExpression(x1, "cos(b1) + a1 * X5 + E_X1"); pm.setNodeExpression(x2, "a2 * X1 + E_X2"); pm.setNodeExpression(x3, "tan(a3*X2 + a4*X1) + E_X3"); pm.setNodeExpression(x4, "0.1 * E^X2 + X3 + E_X4"); pm.setNodeExpression(x5, "0.1 * E^X4 + a6* X2 + E_X5"); pm.setNodeExpression(e1, "U(0, 1)"); pm.setNodeExpression(e2, "U(0, 1)"); pm.setNodeExpression(e3, "U(0, 1)"); pm.setNodeExpression(e4, "U(0, 1)"); pm.setNodeExpression(e5, "U(0, 1)"); GeneralizedSemIm im = new GeneralizedSemIm(pm); print(im); DataSet dataSet = im.simulateDataNSteps(1000, false); // System.out.println(dataSet); double[] d1 = dataSet.getDoubleData().getColumn(0).toArray(); double[] d2 = dataSet.getDoubleData().getColumn(1).toArray(); double cov = StatUtils.covariance(d1, d2); assertEquals(-0.002, cov, 0.001); } catch (ParseException e) { e.printStackTrace(); } }
/** * Constructs a new standardized SEM IM from the freeParameters in the given SEM IM. * * @param im Stop asking me for these things! The given SEM IM!!! * @param initialization CALCULATE_FROM_SEM if the initial values will be calculated from the * given SEM IM; INITIALIZE_FROM_DATA if data will be simulated from the given SEM, * standardized, and estimated. */ public StandardizedSemIm(SemIm im, Initialization initialization) { this.semPm = new SemPm(im.getSemPm()); this.semGraph = new SemGraph(semPm.getGraph()); semGraph.setShowErrorTerms(true); if (semGraph.existsDirectedCycle()) { throw new IllegalArgumentException("The cyclic case is not handled."); } if (initialization == Initialization.CALCULATE_FROM_SEM) { // This code calculates the new coefficients directly from the old ones. edgeParameters = new HashMap<Edge, Double>(); List<Node> nodes = im.getVariableNodes(); TetradMatrix impliedCovar = im.getImplCovar(true); for (Parameter parameter : im.getSemPm().getParameters()) { if (parameter.getType() == ParamType.COEF) { Node a = parameter.getNodeA(); Node b = parameter.getNodeB(); int aindex = nodes.indexOf(a); int bindex = nodes.indexOf(b); double vara = impliedCovar.get(aindex, aindex); double stda = Math.sqrt(vara); double varb = impliedCovar.get(bindex, bindex); double stdb = Math.sqrt(varb); double oldCoef = im.getEdgeCoef(a, b); double newCoef = (stda / stdb) * oldCoef; edgeParameters.put(Edges.directedEdge(a, b), newCoef); } else if (parameter.getType() == ParamType.COVAR) { Node a = parameter.getNodeA(); Node b = parameter.getNodeB(); Node exoa = semGraph.getExogenous(a); Node exob = semGraph.getExogenous(b); double covar = im.getErrCovar(a, b) / Math.sqrt(im.getErrVar(a) * im.getErrVar(b)); edgeParameters.put(Edges.bidirectedEdge(exoa, exob), covar); } } } else { // This code estimates the new coefficients from simulated data from the old model. DataSet dataSet = im.simulateData(1000, false); TetradMatrix _dataSet = dataSet.getDoubleData(); _dataSet = DataUtils.standardizeData(_dataSet); DataSet dataSetStandardized = ColtDataSet.makeData(dataSet.getVariables(), _dataSet); SemEstimator estimator = new SemEstimator(dataSetStandardized, im.getSemPm()); SemIm imStandardized = estimator.estimate(); edgeParameters = new HashMap<Edge, Double>(); for (Parameter parameter : imStandardized.getSemPm().getParameters()) { if (parameter.getType() == ParamType.COEF) { Node a = parameter.getNodeA(); Node b = parameter.getNodeB(); double coef = imStandardized.getEdgeCoef(a, b); edgeParameters.put(Edges.directedEdge(a, b), coef); } else if (parameter.getType() == ParamType.COVAR) { Node a = parameter.getNodeA(); Node b = parameter.getNodeB(); Node exoa = semGraph.getExogenous(a); Node exob = semGraph.getExogenous(b); double covar = -im.getErrCovar(a, b) / Math.sqrt(im.getErrVar(a) * im.getErrVar(b)); edgeParameters.put(Edges.bidirectedEdge(exoa, exob), covar); } } } this.measuredNodes = Collections.unmodifiableList(semPm.getMeasuredNodes()); }