/** * Set the transforms of a rigidBody to match the transforms of a bone. this is used to make the * ragdoll follow the skeleton motion while in Kinematic mode * * @param link the link containing the bone and the rigidBody * @param position just a temp vector for position * @param tmpRot1 just a temp quaternion for rotation */ private void matchPhysicObjectToBone( PhysicsBoneLink link, Vector3f position, Quaternion tmpRot1) { // computing position from rotation and scale targetModel.getWorldTransform().transformVector(link.bone.getModelSpacePosition(), position); // computing rotation tmpRot1 .set(link.bone.getModelSpaceRotation()) .multLocal(link.bone.getWorldBindInverseRotation()); targetModel.getWorldRotation().mult(tmpRot1, tmpRot1); tmpRot1.normalizeLocal(); // updating physic location/rotation of the physic bone link.rigidBody.setPhysicsLocation(position); link.rigidBody.setPhysicsRotation(tmpRot1); }
/** * Smoothly blend from Ragdoll mode to Kinematic mode This is useful to blend ragdoll actual * position to a keyframe animation for example * * @param blendTime the blending time between ragdoll to anim. */ public void blendToKinematicMode(float blendTime) { if (mode == Mode.Kinematic) { return; } blendedControl = true; this.blendTime = blendTime; mode = Mode.Kinematic; AnimControl animControl = targetModel.getControl(AnimControl.class); animControl.setEnabled(true); TempVars vars = TempVars.get(); for (PhysicsBoneLink link : boneLinks.values()) { Vector3f p = link.rigidBody.getMotionState().getWorldLocation(); Vector3f position = vars.vect1; targetModel.getWorldTransform().transformInverseVector(p, position); Quaternion q = link.rigidBody.getMotionState().getWorldRotationQuat(); Quaternion q2 = vars.quat1; Quaternion q3 = vars.quat2; q2.set(q).multLocal(link.initalWorldRotation).normalizeLocal(); q3.set(targetModel.getWorldRotation()).inverseLocal().mult(q2, q2); q2.normalizeLocal(); link.startBlendingPos.set(position); link.startBlendingRot.set(q2); link.rigidBody.setKinematic(true); } vars.release(); for (Bone bone : skeleton.getRoots()) { RagdollUtils.setUserControl(bone, false); } blendStart = 0; }
public void update(float tpf) { if (!enabled) { return; } TempVars vars = TempVars.get(); Quaternion tmpRot1 = vars.quat1; Quaternion tmpRot2 = vars.quat2; // if the ragdoll has the control of the skeleton, we update each bone with its position in // physic world space. if (mode == mode.Ragdoll && targetModel.getLocalTranslation().equals(modelPosition)) { for (PhysicsBoneLink link : boneLinks.values()) { Vector3f position = vars.vect1; // retrieving bone position in physic world space Vector3f p = link.rigidBody.getMotionState().getWorldLocation(); // transforming this position with inverse transforms of the model targetModel.getWorldTransform().transformInverseVector(p, position); // retrieving bone rotation in physic world space Quaternion q = link.rigidBody.getMotionState().getWorldRotationQuat(); // multiplying this rotation by the initialWorld rotation of the bone, // then transforming it with the inverse world rotation of the model tmpRot1.set(q).multLocal(link.initalWorldRotation); tmpRot2.set(targetModel.getWorldRotation()).inverseLocal().mult(tmpRot1, tmpRot1); tmpRot1.normalizeLocal(); // if the bone is the root bone, we apply the physic's transform to the model, so its // position and rotation are correctly updated if (link.bone.getParent() == null) { // offsetting the physic's position/rotation by the root bone inverse model space // position/rotaion modelPosition.set(p).subtractLocal(link.bone.getWorldBindPosition()); targetModel .getParent() .getWorldTransform() .transformInverseVector(modelPosition, modelPosition); modelRotation .set(q) .multLocal(tmpRot2.set(link.bone.getWorldBindRotation()).inverseLocal()); // applying transforms to the model targetModel.setLocalTranslation(modelPosition); targetModel.setLocalRotation(modelRotation); // Applying computed transforms to the bone link.bone.setUserTransformsWorld(position, tmpRot1); } else { // if boneList is empty, this means that every bone in the ragdoll has a collision shape, // so we just update the bone position if (boneList.isEmpty()) { link.bone.setUserTransformsWorld(position, tmpRot1); } else { // boneList is not empty, this means some bones of the skeleton might not be associated // with a collision shape. // So we update them recusively RagdollUtils.setTransform(link.bone, position, tmpRot1, false, boneList); } } } } else { // the ragdoll does not have the controll, so the keyframed animation updates the physic // position of the physic bonces for (PhysicsBoneLink link : boneLinks.values()) { Vector3f position = vars.vect1; // if blended control this means, keyframed animation is updating the skeleton, // but to allow smooth transition, we blend this transformation with the saved position of // the ragdoll if (blendedControl) { Vector3f position2 = vars.vect2; // initializing tmp vars with the start position/rotation of the ragdoll position.set(link.startBlendingPos); tmpRot1.set(link.startBlendingRot); // interpolating between ragdoll position/rotation and keyframed position/rotation tmpRot2.set(tmpRot1).nlerp(link.bone.getModelSpaceRotation(), blendStart / blendTime); position2 .set(position) .interpolate(link.bone.getModelSpacePosition(), blendStart / blendTime); tmpRot1.set(tmpRot2); position.set(position2); // updating bones transforms if (boneList.isEmpty()) { // we ensure we have the control to update the bone link.bone.setUserControl(true); link.bone.setUserTransformsWorld(position, tmpRot1); // we give control back to the key framed animation. link.bone.setUserControl(false); } else { RagdollUtils.setTransform(link.bone, position, tmpRot1, true, boneList); } } // setting skeleton transforms to the ragdoll matchPhysicObjectToBone(link, position, tmpRot1); modelPosition.set(targetModel.getLocalTranslation()); } // time control for blending if (blendedControl) { blendStart += tpf; if (blendStart > blendTime) { blendedControl = false; } } } vars.release(); }