protected void crowdingDistanceSelection(Ranking ranking) { population.clear(); int rankingIndex = 0; while (populationIsNotFull()) { if (subfrontFillsIntoThePopulation(ranking, rankingIndex)) { addRankedSolutionsToPopulation(ranking, rankingIndex); rankingIndex++; } else { computeCrowdingDistance(ranking, rankingIndex); addLastRankedSolutions(ranking, rankingIndex); } } }
/** * Execute the ElitistES algorithm * @throws JMException */ public SolutionSet execute() throws JMException, ClassNotFoundException { int maxEvaluations ; int evaluations ; SolutionSet population ; SolutionSet offspringPopulation ; Operator mutationOperator ; Comparator comparator ; comparator = new ObjectiveComparator(0) ; // Single objective comparator // Read the params maxEvaluations = ((Integer)this.getInputParameter("maxEvaluations")).intValue(); // Initialize the variables population = new SolutionSet(mu_) ; offspringPopulation = new SolutionSet(mu_ + lambda_) ; evaluations = 0; // Read the operators mutationOperator = this.operators_.get("mutation"); System.out.println("(" + mu_ + " + " + lambda_+")ES") ; // Create the parent population of mu solutions Solution newIndividual; for (int i = 0; i < mu_; i++) { newIndividual = new Solution(problem_); evaluations++; population.add(newIndividual); } //for finish { // async { for (int i = 0; i < mu_; i++) { evaluate_internal(population, i, null); } } } // Main loop int offsprings ; offsprings = lambda_ / mu_ ; while (evaluations < maxEvaluations) { // STEP 1. Generate the mu+lambda population for (int i = 0; i < mu_; i++) { for (int j = 0; j < offsprings; j++) { Solution offspring = new Solution(population.get(i)) ; offspringPopulation.add(offspring) ; evaluations ++ ; } // for } // for finish { // async { for (int i = 0; i < mu_*offsprings; i++) { evaluate_internal(offspringPopulation, i, mutationOperator); } } } // STEP 2. Add the mu individuals to the offspring population for (int i = 0 ; i < mu_; i++) { offspringPopulation.add(population.get(i)) ; } // for population.clear() ; // STEP 3. Sort the mu+lambda population offspringPopulation.sort(comparator) ; // STEP 4. Create the new mu population for (int i = 0; i < mu_; i++) population.add(offspringPopulation.get(i)) ; System.out.println("Evaluation: " + evaluations + " Fitness: " + population.get(0).getObjective(0)) ; // STEP 6. Delete the mu+lambda population offspringPopulation.clear() ; } // while // Return a population with the best individual SolutionSet resultPopulation = new SolutionSet(1) ; resultPopulation.add(population.get(0)) ;
/** * Runs of the PESA2 algorithm. * * @return a <code>SolutionSet</code> that is a set of non dominated solutions as a result of the * algorithm execution * @throws JMException */ public SolutionSet execute() throws JMException, ClassNotFoundException { int archiveSize, bisections, maxEvaluations, evaluations, populationSize; AdaptiveGridArchive archive; SolutionSet solutionSet; Operator crossover, mutation, selection; // Read parameters populationSize = ((Integer) (inputParameters_.get("populationSize"))).intValue(); archiveSize = ((Integer) (inputParameters_.get("archiveSize"))).intValue(); bisections = ((Integer) (inputParameters_.get("bisections"))).intValue(); maxEvaluations = ((Integer) (inputParameters_.get("maxEvaluations"))).intValue(); // Get the operators crossover = operators_.get("crossover"); mutation = operators_.get("mutation"); // Initialize the variables evaluations = 0; archive = new AdaptiveGridArchive(archiveSize, bisections, problem_.getNumberOfObjectives()); solutionSet = new SolutionSet(populationSize); HashMap parameters = null; selection = new PESA2Selection(parameters); // -> Create the initial individual and evaluate it and his constraints for (int i = 0; i < populationSize; i++) { Solution solution = new Solution(problem_); problem_.evaluate(solution); problem_.evaluateConstraints(solution); solutionSet.add(solution); } // Incorporate non-dominated solution to the archive for (int i = 0; i < solutionSet.size(); i++) { archive.add(solutionSet.get(i)); // Only non dominated are accepted by // the archive } // Clear the init solutionSet solutionSet.clear(); // Iterations.... Solution[] parents = new Solution[2]; do { // -> Create the offSpring solutionSet while (solutionSet.size() < populationSize) { parents[0] = (Solution) selection.execute(archive); parents[1] = (Solution) selection.execute(archive); Solution[] offSpring = (Solution[]) crossover.execute(parents); mutation.execute(offSpring[0]); problem_.evaluate(offSpring[0]); problem_.evaluateConstraints(offSpring[0]); evaluations++; solutionSet.add(offSpring[0]); } for (int i = 0; i < solutionSet.size(); i++) archive.add(solutionSet.get(i)); // Clear the solutionSet solutionSet.clear(); } while (evaluations < maxEvaluations); // Return the solutionSet of non-dominated individual return archive; } // execute