/** * Constructor. Creates a new instance of Spea2Fitness for a given <code>SolutionSet</code>. * * @param solutionSet The <code>SolutionSet</code> */ public Spea2Fitness(SolutionSet solutionSet) { distance = distance_.distanceMatrix(solutionSet); solutionSet_ = solutionSet; for (int i = 0; i < solutionSet_.size(); i++) { solutionSet_.get(i).setLocation(i); } // for } // Spea2Fitness
protected void addRankedSolutionsToPopulation(Ranking ranking, int rank) throws JMetalException { SolutionSet front; front = ranking.getSubfront(rank); for (int i = 0; i < front.size(); i++) { population.add(front.get(i)); } }
/** * Apply a mutation operator to some particles in the swarm * * @throws jmetal.util.JMException */ private void mopsoMutation(int actualIteration, int totalIterations) throws JMException { for (int i = 0; i < particles_.size(); i++) { if ((i % 6) == 0) polynomialMutation_.execute(particles_.get(i)); // if (i % 3 == 0) { //particles_ mutated with a non-uniform mutation %3 // nonUniformMutation_.execute(particles_.get(i)); // } else if (i % 3 == 1) { //particles_ mutated with a uniform mutation operator // uniformMutation_.execute(particles_.get(i)); // } else //particles_ without mutation // ; } } // mopsoMutation
protected void addLastRankedSolutions(Ranking ranking, int rank) throws JMetalException { SolutionSet currentRankedFront = ranking.getSubfront(rank); currentRankedFront.sort(new CrowdingComparator()); int i = 0; while (population.size() < populationSize) { population.add(currentRankedFront.get(i)); i++; } }
/** * Returns the minimum distance from a <code>Solution</code> to a <code> * SolutionSet according to the variable values</code>. * * @param solution The <code>Solution</code>. * @param solutionSet The <code>SolutionSet</code>. * @return The minimum distance between solution and the set. * @throws JMException */ public double distanceToSolutionSetInSolutionSpace(Solution solution, SolutionSet solutionSet) throws JMException { // At start point the distance is the max double distance = Double.MAX_VALUE; // found the min distance respect to population for (int i = 0; i < solutionSet.size(); i++) { double aux = this.distanceBetweenSolutions(solution, solutionSet.get(i)); if (aux < distance) distance = aux; } // for // ->Return the best distance return distance; } // distanceToSolutionSetInSolutionSpace
/** * Constructor * * @param problem Problem to solve */ public SMPSO(Problem problem, String trueParetoFront) throws FileNotFoundException { super(problem); hy_ = new Hypervolume(); jmetal.qualityIndicator.util.MetricsUtil mu = new jmetal.qualityIndicator.util.MetricsUtil(); trueFront_ = mu.readNonDominatedSolutionSet(trueParetoFront); trueHypervolume_ = hy_.hypervolume( trueFront_.writeObjectivesToMatrix(), trueFront_.writeObjectivesToMatrix(), problem_.getNumberOfObjectives()); // Default configuration r1Max_ = 1.0; r1Min_ = 0.0; r2Max_ = 1.0; r2Min_ = 0.0; C1Max_ = 2.5; C1Min_ = 1.5; C2Max_ = 2.5; C2Min_ = 1.5; WMax_ = 0.1; WMin_ = 0.1; ChVel1_ = -1; ChVel2_ = -1; } // Constructor
/** * Performs the operation * * @param object Object representing a SolutionSet. * @return the best solution found */ public Object execute(Object object) { SolutionSet solutionSet = (SolutionSet) object; if (solutionSet.size() == 0) { return null; } int worstSolution; worstSolution = 0; for (int i = 1; i < solutionSet.size(); i++) { if (comparator_.compare(solutionSet.get(i), solutionSet.get(worstSolution)) > 0) worstSolution = i; } // for return worstSolution; } // Execute
/** * Performs the operation * * @param object Object representing a SolutionSet. * @return the best solution found */ public Object execute(Object object, CITO_CAITO problem) { SolutionSet solutionSet = (SolutionSet) object; if (solutionSet.size() == 0) { return null; } int bestSolution; bestSolution = 0; for (int i = 1; i < solutionSet.size(); i++) { if (comparator_.compare(solutionSet.get(i), solutionSet.get(bestSolution)) < 0) bestSolution = i; } // for return bestSolution; } // Execute
public static void main(String[] args) throws JMException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator crossover; // Crossover operator Operator mutation; // Mutation operator Operator selection; // Selection operator // int bits ; // Length of bit string in the OneMax problem // bits = 512 ; // problem = new OneMax(bits); problem = new Sphere("Real", 20); // problem = new Easom("Real") ; // problem = new Griewank("Real", 10) ; algorithm = new DE(problem); // Asynchronous cGA /* Algorithm parameters*/ algorithm.setInputParameter("populationSize", 100); algorithm.setInputParameter("maxEvaluations", 1000000); // Crossover operator crossover = CrossoverFactory.getCrossoverOperator("DifferentialEvolutionCrossover"); crossover.setParameter("CR", 0.1); crossover.setParameter("F", 0.5); crossover.setParameter("DE_VARIANT", "rand/1/bin"); // Add the operators to the algorithm selection = SelectionFactory.getSelectionOperator("DifferentialEvolutionSelection"); algorithm.addOperator("crossover", crossover); algorithm.addOperator("selection", selection); /* Execute the Algorithm */ long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; System.out.println("Total execution time: " + estimatedTime); /* Log messages */ System.out.println("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); System.out.println("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); } // main
protected void createInitialPopulation() throws ClassNotFoundException, JMetalException { population = new SolutionSet(populationSize); Solution newSolution; for (int i = 0; i < populationSize; i++) { newSolution = new Solution(problem); population.add(newSolution); } }
protected void crowdingDistanceSelection(Ranking ranking) { population.clear(); int rankingIndex = 0; while (populationIsNotFull()) { if (subfrontFillsIntoThePopulation(ranking, rankingIndex)) { addRankedSolutionsToPopulation(ranking, rankingIndex); rankingIndex++; } else { computeCrowdingDistance(ranking, rankingIndex); addLastRankedSolutions(ranking, rankingIndex); } } }
/** * Update the position of each particle * * @throws jmetal.util.JMException */ private void computeNewPositions() throws JMException { for (int i = 0; i < swarmSize_; i++) { XReal particle = new XReal(particles_.get(i)); for (int var = 0; var < particle.getNumberOfDecisionVariables(); var++) { particle.setValue(var, particle.getValue(var) + speed_[i][var]); if (particle.getValue(var) < problem_.getLowerLimit(var)) { particle.setValue(var, problem_.getLowerLimit(var)); speed_[i][var] = speed_[i][var] * ChVel1_; // } if (particle.getValue(var) > problem_.getUpperLimit(var)) { particle.setValue(var, problem_.getUpperLimit(var)); speed_[i][var] = speed_[i][var] * ChVel2_; // } } } } // computeNewPositions
/** * Update the speed of each particle * * @throws jmetal.util.JMException */ private void computeSpeed(int iter, int miter) throws JMException, IOException { double r1, r2, W, C1, C2; double wmax, wmin, deltaMax, deltaMin; XReal bestGlobal; for (int i = 0; i < swarmSize_; i++) { XReal particle = new XReal(particles_.get(i)); XReal bestParticle = new XReal(best_[i]); // Select a global best_ for calculate the speed of particle i, bestGlobal Solution one, two; int pos1 = PseudoRandom.randInt(0, leaders_.size() - 1); int pos2 = PseudoRandom.randInt(0, leaders_.size() - 1); one = leaders_.get(pos1); two = leaders_.get(pos2); if (crowdingDistanceComparator_.compare(one, two) < 1) { bestGlobal = new XReal(one); } else { bestGlobal = new XReal(two); // Params for velocity equation } r1 = PseudoRandom.randDouble(r1Min_, r1Max_); r2 = PseudoRandom.randDouble(r2Min_, r2Max_); C1 = PseudoRandom.randDouble(C1Min_, C1Max_); C2 = PseudoRandom.randDouble(C2Min_, C2Max_); W = PseudoRandom.randDouble(WMin_, WMax_); // wmax = WMax_; wmin = WMin_; for (int var = 0; var < particle.getNumberOfDecisionVariables(); var++) { // Computing the velocity of this particle speed_[i][var] = velocityConstriction( constrictionCoefficient(C1, C2) * (inertiaWeight(iter, miter, wmax, wmin) * speed_[i][var] + C1 * r1 * (bestParticle.getValue(var) - particle.getValue(var)) + C2 * r2 * (bestGlobal.getValue(var) - particle.getValue(var))), deltaMax_, // [var], deltaMin_, // [var], var, i); } } } // computeSpeed
private void computeNewPositions_parallel(int i) throws JMException { //Variable[] particle = particles_.get(i).getDecisionVariables(); XReal particle = new XReal(particles_.get(i)) ; //particle.move(speed_[i]); for (int var = 0; var < particle.size(); var++) { particle.setValue(var, particle.getValue(var) + speed_[i][var]) ; if (particle.getValue(var) < problem_.getLowerLimit(var)) { particle.setValue(var, problem_.getLowerLimit(var)); speed_[i][var] = speed_[i][var] * ChVel1_; // } if (particle.getValue(var) > problem_.getUpperLimit(var)) { particle.setValue(var, problem_.getUpperLimit(var)); speed_[i][var] = speed_[i][var] * ChVel2_; // } } }
/** * Returns a matrix with distances between solutions in a <code>SolutionSet</code>. * * @param solutionSet The <code>SolutionSet</code>. * @return a matrix with distances. */ public double[][] distanceMatrix(SolutionSet solutionSet) { Solution solutionI, solutionJ; // The matrix of distances double[][] distance = new double[solutionSet.size()][solutionSet.size()]; // -> Calculate the distances for (int i = 0; i < solutionSet.size(); i++) { distance[i][i] = 0.0; solutionI = solutionSet.get(i); for (int j = i + 1; j < solutionSet.size(); j++) { solutionJ = solutionSet.get(j); distance[i][j] = this.distanceBetweenObjectives(solutionI, solutionJ); distance[j][i] = distance[i][j]; } // for } // for // ->Return the matrix of distances return distance; } // distanceMatrix
/** * @param args Command line arguments. The first (optional) argument specifies the problem to * solve. * @throws JMException * @throws IOException * @throws SecurityException Usage: three options - jmetal.metaheuristics.mocell.MOCell_main - * jmetal.metaheuristics.mocell.MOCell_main problemName - * jmetal.metaheuristics.mocell.MOCell_main problemName ParetoFrontFile */ public static void main(String[] args) throws JMException, IOException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator mutation; // Mutation operator QualityIndicator indicators; // Object to get quality indicators // Logger object and file to store log messages logger_ = Configuration.logger_; fileHandler_ = new FileHandler("PAES_main.log"); logger_.addHandler(fileHandler_); indicators = null; if (args.length == 1) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); } // if else if (args.length == 2) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); indicators = new QualityIndicator(problem, args[1]); } // if else { // Default problem problem = new Kursawe("ArrayReal", 3); // problem = new Fonseca("Real"); // problem = new Kursawe("BinaryReal",3); // problem = new Water("Real"); // problem = new ZDT4("Real", 1000); // problem = new WFG1("Real"); // problem = new DTLZ1("Real"); // problem = new OKA2("Real") ; } // else algorithm = new PAES(problem); // Algorithm parameters algorithm.setInputParameter("archiveSize", 100); algorithm.setInputParameter("biSections", 5); algorithm.setInputParameter("maxEvaluations", 25000); // Mutation (Real variables) mutation = MutationFactory.getMutationOperator("PolynomialMutation"); mutation.setParameter("probability", 1.0 / problem.getNumberOfVariables()); mutation.setParameter("distributionIndex", 20.0); // Mutation (BinaryReal variables) // mutation = MutationFactory.getMutationOperator("BitFlipMutation"); // mutation.setParameter("probability",0.1); // Add the operators to the algorithm algorithm.addOperator("mutation", mutation); // Execute the Algorithm long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; // Result messages // STEP 8. Print the results logger_.info("Total execution time: " + estimatedTime + "ms"); logger_.info("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); logger_.info("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); if (indicators != null) { logger_.info("Quality indicators"); logger_.info("Hypervolume: " + indicators.getHypervolume(population)); logger_.info("GD : " + indicators.getGD(population)); logger_.info("IGD : " + indicators.getIGD(population)); logger_.info("Spread : " + indicators.getSpread(population)); logger_.info("Epsilon : " + indicators.getEpsilon(population)); } // if } // main
protected Ranking rankPopulation() throws JMetalException { SolutionSet union = population.union(offspringPopulation); return new Ranking(union); }
protected SolutionSet evaluatePopulation(SolutionSet population) throws JMetalException { evaluations += population.size(); return evaluator.evaluate(population, problem); }
/** * Execute the ElitistES algorithm * @throws JMException */ public SolutionSet execute() throws JMException, ClassNotFoundException { int maxEvaluations ; int evaluations ; SolutionSet population ; SolutionSet offspringPopulation ; Operator mutationOperator ; Comparator comparator ; comparator = new ObjectiveComparator(0) ; // Single objective comparator // Read the params maxEvaluations = ((Integer)this.getInputParameter("maxEvaluations")).intValue(); // Initialize the variables population = new SolutionSet(mu_) ; offspringPopulation = new SolutionSet(mu_ + lambda_) ; evaluations = 0; // Read the operators mutationOperator = this.operators_.get("mutation"); System.out.println("(" + mu_ + " + " + lambda_+")ES") ; // Create the parent population of mu solutions Solution newIndividual; for (int i = 0; i < mu_; i++) { newIndividual = new Solution(problem_); evaluations++; population.add(newIndividual); } //for finish { // async { for (int i = 0; i < mu_; i++) { evaluate_internal(population, i, null); } } } // Main loop int offsprings ; offsprings = lambda_ / mu_ ; while (evaluations < maxEvaluations) { // STEP 1. Generate the mu+lambda population for (int i = 0; i < mu_; i++) { for (int j = 0; j < offsprings; j++) { Solution offspring = new Solution(population.get(i)) ; offspringPopulation.add(offspring) ; evaluations ++ ; } // for } // for finish { // async { for (int i = 0; i < mu_*offsprings; i++) { evaluate_internal(offspringPopulation, i, mutationOperator); } } } // STEP 2. Add the mu individuals to the offspring population for (int i = 0 ; i < mu_; i++) { offspringPopulation.add(population.get(i)) ; } // for population.clear() ; // STEP 3. Sort the mu+lambda population offspringPopulation.sort(comparator) ; // STEP 4. Create the new mu population for (int i = 0; i < mu_; i++) population.add(offspringPopulation.get(i)) ; System.out.println("Evaluation: " + evaluations + " Fitness: " + population.get(0).getObjective(0)) ; // STEP 6. Delete the mu+lambda population offspringPopulation.clear() ; } // while // Return a population with the best individual SolutionSet resultPopulation = new SolutionSet(1) ; resultPopulation.add(population.get(0)) ;
/** * Runs of the Spea2 algorithm. * * @return a <code>SolutionSet</code> that is a set of non dominated solutions as a result of the * algorithm execution * @throws JMException */ public SolutionSet execute() throws JMException, ClassNotFoundException { int populationSize, archiveSize, maxEvaluations, evaluations; Operator crossoverOperator, mutationOperator, selectionOperator; SolutionSet solutionSet, archive, offSpringSolutionSet; // Read the params populationSize = ((Integer) getInputParameter("populationSize")).intValue(); archiveSize = ((Integer) getInputParameter("archiveSize")).intValue(); maxEvaluations = ((Integer) getInputParameter("maxEvaluations")).intValue(); // Read the operators crossoverOperator = operators_.get("crossover"); mutationOperator = operators_.get("mutation"); selectionOperator = operators_.get("selection"); // Initialize the variables solutionSet = new SolutionSet(populationSize); archive = new SolutionSet(archiveSize); evaluations = 0; // -> Create the initial solutionSet Solution newSolution; for (int i = 0; i < populationSize; i++) { newSolution = new Solution(problem_); problem_.evaluate(newSolution); problem_.evaluateConstraints(newSolution); evaluations++; solutionSet.add(newSolution); } while (evaluations < maxEvaluations) { SolutionSet union = ((SolutionSet) solutionSet).union(archive); Spea2Fitness spea = new Spea2Fitness(union); spea.fitnessAssign(); archive = spea.environmentalSelection(archiveSize); // Create a new offspringPopulation offSpringSolutionSet = new SolutionSet(populationSize); Solution[] parents = new Solution[2]; while (offSpringSolutionSet.size() < populationSize) { int j = 0; do { j++; parents[0] = (Solution) selectionOperator.execute(archive); } while (j < SPEA2.TOURNAMENTS_ROUNDS); // do-while int k = 0; do { k++; parents[1] = (Solution) selectionOperator.execute(archive); } while (k < SPEA2.TOURNAMENTS_ROUNDS); // do-while // make the crossover Solution[] offSpring = (Solution[]) crossoverOperator.execute(parents); mutationOperator.execute(offSpring[0]); problem_.evaluate(offSpring[0]); problem_.evaluateConstraints(offSpring[0]); offSpringSolutionSet.add(offSpring[0]); evaluations++; } // while // End Create a offSpring solutionSet solutionSet = offSpringSolutionSet; } // while Ranking ranking = new Ranking(archive); return ranking.getSubfront(0); } // execute
/** @param args the command line arguments -- modelname, alg_name, evaluation_times, [runid] */ public static void main(String[] args) throws Exception { try { String name = args[0]; URL location = Main.class.getProtectionDomain().getCodeSource().getLocation(); String loc = location.toString(); String project_path = loc.substring(5, loc.lastIndexOf("SPL/")) + "SPL/"; // with '/' at the end String fm = project_path + "dimacs_data/" + name + ".dimacs"; String augment = fm + ".augment"; String dead = fm + ".dead"; String mandatory = fm + ".mandatory"; String seed = fm + ".richseed"; String opfile = fm + ".sipop"; Problem p = new ProductLineProblem(fm, augment, mandatory, dead, seed); // Problem p = new ProductLineProblemNovelPrep(fm, augment, mandatory, dead, seed, // opfile); // GroupedProblem.grouping((ProductLineProblem) p, 100); System.exit(0); Algorithm a; int evaluation_times = Integer.parseInt(args[2]); String alg_name = args[1]; String runid = ""; if (args.length >= 4) { runid = args[3]; } switch (alg_name) { case "IBEA": a = new SPL_SettingsIBEA(p).configureICSE2013(evaluation_times); break; case "SIPIBEA": a = new SPL_SettingsIBEA(p).configureSIPIBEA(evaluation_times); break; case "SPEA2": a = new SPL_SettingsEMOs(p).configureSPEA2(evaluation_times); break; case "NSGA2": a = new SPL_SettingsEMOs(p).configureNSGA2(evaluation_times); break; case "IBEASEED": a = new SPL_SettingsIBEA(p).configureIBEASEED(evaluation_times); break; case "SATIBEA": // a = new SPL_SettingsIBEA(p).configureICSE15(1000, fm, ((ProductLineProblem) // p).getNumFeatures(), // ((ProductLineProblem) p).getConstraints()); a = new SPL_SettingsIBEA(p) .configureSATIBEA( evaluation_times, fm, ((ProductLineProblem) p).getNumFeatures(), ((ProductLineProblem) p).getConstraints()); break; default: a = new SPL_SettingsIBEA(p).configureICSE2013(evaluation_times); } long start = System.currentTimeMillis(); SolutionSet pop = a.execute(); float total_time = (System.currentTimeMillis() - start) / 1000.0f; String file_tag = name + "_" + alg_name + '_' + evaluation_times / 1000 + "k_" + runid + ".txt"; String file_path = project_path + "j_res/" + file_tag; File file = new File(file_path); if (!file.exists()) { file.createNewFile(); } FileWriter fw = new FileWriter(file.getAbsoluteFile()); BufferedWriter bw = new BufferedWriter(fw); for (int i = 0; i < pop.size(); i++) { Variable v = pop.get(i).getDecisionVariables()[0]; bw.write((Binary) v + "\n"); System.out.println("Conf" + (i + 1) + ": " + (Binary) v + " "); } bw.write("~~~\n"); for (int i = 0; i < pop.size(); i++) { Variable v = pop.get(i).getDecisionVariables()[0]; for (int j = 0; j < pop.get(i).getNumberOfObjectives(); j++) { bw.write(pop.get(i).getObjective(j) + " "); System.out.print(pop.get(i).getObjective(j) + " "); } bw.write("\n"); System.out.println(""); } System.out.println(total_time); bw.write("~~~\n" + total_time + "\n"); bw.close(); fw.close(); } catch (Exception e) { e.printStackTrace(); } }
} // execute private void evaluate_internal(SolutionSet s, int i, Operator mutationOperator) throws JMException, ClassNotFoundException { Solution sol = s.get(i); if(mutationOperator != null) mutationOperator.execute(sol);
protected boolean subfrontFillsIntoThePopulation(Ranking ranking, int rank) { return ranking.getSubfront(rank).size() < (populationSize - population.size()); }
private void evaluate_parallel_internal(int i) throws JMException, ClassNotFoundException { Solution particle = particles_.get(i); problem_.evaluate(particle); }
/** * Gets 'size' elements from a population of more than 'size' elements using for this de * enviromentalSelection truncation * * @param size The number of elements to get. */ public SolutionSet environmentalSelection(int size) { if (solutionSet_.size() < size) { size = solutionSet_.size(); } // Create a new auxiliar population for no alter the original population SolutionSet aux = new SolutionSet(solutionSet_.size()); int i = 0; while (i < solutionSet_.size()) { if (solutionSet_.get(i).getFitness() < 1.0) { aux.add(solutionSet_.get(i)); solutionSet_.remove(i); } else { i++; } // if } // while if (aux.size() < size) { Comparator comparator = new FitnessComparator(); solutionSet_.sort(comparator); int remain = size - aux.size(); for (i = 0; i < remain; i++) { aux.add(solutionSet_.get(i)); } return aux; } else if (aux.size() == size) { return aux; } double[][] distance = distance_.distanceMatrix(aux); List<List<DistanceNode>> distanceList = new LinkedList<List<DistanceNode>>(); for (int pos = 0; pos < aux.size(); pos++) { aux.get(pos).setLocation(pos); List<DistanceNode> distanceNodeList = new ArrayList<DistanceNode>(); for (int ref = 0; ref < aux.size(); ref++) { if (pos != ref) { distanceNodeList.add(new DistanceNode(distance[pos][ref], ref)); } // if } // for distanceList.add(distanceNodeList); } // for for (int q = 0; q < distanceList.size(); q++) { Collections.sort(distanceList.get(q), distanceNodeComparator); } // for while (aux.size() > size) { double minDistance = Double.MAX_VALUE; int toRemove = 0; i = 0; Iterator<List<DistanceNode>> iterator = distanceList.iterator(); while (iterator.hasNext()) { List<DistanceNode> dn = iterator.next(); if (dn.get(0).getDistance() < minDistance) { toRemove = i; minDistance = dn.get(0).getDistance(); // i y toRemove have the same distance to the first solution } else if (dn.get(0).getDistance() == minDistance) { int k = 0; while ((dn.get(k).getDistance() == distanceList.get(toRemove).get(k).getDistance()) && k < (distanceList.get(i).size() - 1)) { k++; } if (dn.get(k).getDistance() < distanceList.get(toRemove).get(k).getDistance()) { toRemove = i; } // if } // if i++; } // while int tmp = aux.get(toRemove).getLocation(); aux.remove(toRemove); distanceList.remove(toRemove); Iterator<List<DistanceNode>> externIterator = distanceList.iterator(); while (externIterator.hasNext()) { Iterator<DistanceNode> interIterator = externIterator.next().iterator(); while (interIterator.hasNext()) { if (interIterator.next().getReference() == tmp) { interIterator.remove(); continue; } // if } // while } // while } // while return aux; } // environmentalSelection
/** * Assigns crowding distances to all solutions in a <code>SolutionSet</code>. * * @param solutionSet The <code>SolutionSet</code>. * @param nObjs Number of objectives. */ public void crowdingDistanceAssignment(SolutionSet solutionSet, int nObjs) { int size = solutionSet.size(); if (size == 0) return; if (size == 1) { solutionSet.get(0).setCrowdingDistance(Double.POSITIVE_INFINITY); return; } // if if (size == 2) { solutionSet.get(0).setCrowdingDistance(Double.POSITIVE_INFINITY); solutionSet.get(1).setCrowdingDistance(Double.POSITIVE_INFINITY); return; } // if // Use a new SolutionSet to evite alter original solutionSet SolutionSet front = new SolutionSet(size); for (int i = 0; i < size; i++) { front.add(solutionSet.get(i)); } for (int i = 0; i < size; i++) front.get(i).setCrowdingDistance(0.0); double objetiveMaxn; double objetiveMinn; double distance; for (int i = 0; i < nObjs; i++) { // Sort the population by Obj n front.sort(new ObjectiveComparator(i)); objetiveMinn = front.get(0).getObjective(i); objetiveMaxn = front.get(front.size() - 1).getObjective(i); // Set de crowding distance front.get(0).setCrowdingDistance(Double.POSITIVE_INFINITY); front.get(size - 1).setCrowdingDistance(Double.POSITIVE_INFINITY); for (int j = 1; j < size - 1; j++) { distance = front.get(j + 1).getObjective(i) - front.get(j - 1).getObjective(i); distance = distance / (objetiveMaxn - objetiveMinn); distance += front.get(j).getCrowdingDistance(); front.get(j).setCrowdingDistance(distance); } // for } // for } // crowdingDistanceAssing
protected boolean populationIsNotFull() { return population.size() < populationSize; }
/** Assigns fitness for all the solutions. */ public void fitnessAssign() { double[] strength = new double[solutionSet_.size()]; double[] rawFitness = new double[solutionSet_.size()]; double kDistance; // Calculate the strength value // strength(i) = |{j | j <- SolutionSet and i dominate j}| for (int i = 0; i < solutionSet_.size(); i++) { for (int j = 0; j < solutionSet_.size(); j++) { if (dominance_.compare(solutionSet_.get(i), solutionSet_.get(j)) == -1) { strength[i] += 1.0; } // if } // for } // for // Calculate the raw fitness // rawFitness(i) = |{sum strenght(j) | j <- SolutionSet and j dominate i}| for (int i = 0; i < solutionSet_.size(); i++) { for (int j = 0; j < solutionSet_.size(); j++) { if (dominance_.compare(solutionSet_.get(i), solutionSet_.get(j)) == 1) { rawFitness[i] += strength[j]; } // if } // for } // for // Add the distance to the k-th individual. In the reference paper of SPEA2, // k = sqrt(population.size()), but a value of k = 1 recommended. See // http://www.tik.ee.ethz.ch/pisa/selectors/spea2/spea2_documentation.txt int k = 1; for (int i = 0; i < distance.length; i++) { Arrays.sort(distance[i]); kDistance = 1.0 / (distance[i][k] + 2.0); // Calcule de D(i) distance // population.get(i).setFitness(rawFitness[i]); solutionSet_.get(i).setFitness(rawFitness[i] + kDistance); } // for } // fitnessAsign
/** * Runs of the SMPSO algorithm. * * @return a <code>SolutionSet</code> that is a set of non dominated solutions as a result of the * algorithm execution * @throws jmetal.util.JMException */ public SolutionSet execute() throws JMException, ClassNotFoundException { initParams(); success_ = false; // ->Step 1 (and 3) Create the initial population and evaluate for (int i = 0; i < swarmSize_; i++) { Solution particle = new Solution(problem_); problem_.evaluate(particle); problem_.evaluateConstraints(particle); particles_.add(particle); } // -> Step2. Initialize the speed_ of each particle to 0 for (int i = 0; i < swarmSize_; i++) { for (int j = 0; j < problem_.getNumberOfVariables(); j++) { speed_[i][j] = 0.0; } } // Step4 and 5 for (int i = 0; i < particles_.size(); i++) { Solution particle = new Solution(particles_.get(i)); leaders_.add(particle); } // -> Step 6. Initialize the memory of each particle for (int i = 0; i < particles_.size(); i++) { Solution particle = new Solution(particles_.get(i)); best_[i] = particle; } // Crowding the leaders_ distance_.crowdingDistanceAssignment(leaders_, problem_.getNumberOfObjectives()); // -> Step 7. Iterations .. while (iteration_ < maxIterations_) { try { // Compute the speed_ computeSpeed(iteration_, maxIterations_); } catch (IOException ex) { Logger.getLogger(SMPSO.class.getName()).log(Level.SEVERE, null, ex); } // Compute the new positions for the particles_ computeNewPositions(); // Mutate the particles_ mopsoMutation(iteration_, maxIterations_); // Evaluate the new particles_ in new positions for (int i = 0; i < particles_.size(); i++) { Solution particle = particles_.get(i); problem_.evaluate(particle); problem_.evaluateConstraints(particle); } // Actualize the archive for (int i = 0; i < particles_.size(); i++) { Solution particle = new Solution(particles_.get(i)); leaders_.add(particle); } // Actualize the memory of this particle for (int i = 0; i < particles_.size(); i++) { int flag = dominance_.compare(particles_.get(i), best_[i]); if (flag != 1) { // the new particle is best_ than the older remeber Solution particle = new Solution(particles_.get(i)); best_[i] = particle; } } // Assign crowding distance to the leaders_ distance_.crowdingDistanceAssignment(leaders_, problem_.getNumberOfObjectives()); iteration_++; /* if ((iteration_ % 1) == 0) { leaders_.printObjectivesOfValidSolutionsToFile("FUNV"+iteration_) ; leaders_.printObjectivesToFile("FUN"+iteration_) ; leaders_.printVariablesToFile("VAR"+iteration_) ; } */ } // leaders_.printObjectivesOfValidSolutionsToFile("FUNV.SMPSO") ; leaders_.printFeasibleFUN("FUN_SMPSO"); return this.leaders_; } // execute
/** * Runs of the PESA2 algorithm. * * @return a <code>SolutionSet</code> that is a set of non dominated solutions as a result of the * algorithm execution * @throws JMException */ public SolutionSet execute() throws JMException, ClassNotFoundException { int archiveSize, bisections, maxEvaluations, evaluations, populationSize; AdaptiveGridArchive archive; SolutionSet solutionSet; Operator crossover, mutation, selection; // Read parameters populationSize = ((Integer) (inputParameters_.get("populationSize"))).intValue(); archiveSize = ((Integer) (inputParameters_.get("archiveSize"))).intValue(); bisections = ((Integer) (inputParameters_.get("bisections"))).intValue(); maxEvaluations = ((Integer) (inputParameters_.get("maxEvaluations"))).intValue(); // Get the operators crossover = operators_.get("crossover"); mutation = operators_.get("mutation"); // Initialize the variables evaluations = 0; archive = new AdaptiveGridArchive(archiveSize, bisections, problem_.getNumberOfObjectives()); solutionSet = new SolutionSet(populationSize); HashMap parameters = null; selection = new PESA2Selection(parameters); // -> Create the initial individual and evaluate it and his constraints for (int i = 0; i < populationSize; i++) { Solution solution = new Solution(problem_); problem_.evaluate(solution); problem_.evaluateConstraints(solution); solutionSet.add(solution); } // Incorporate non-dominated solution to the archive for (int i = 0; i < solutionSet.size(); i++) { archive.add(solutionSet.get(i)); // Only non dominated are accepted by // the archive } // Clear the init solutionSet solutionSet.clear(); // Iterations.... Solution[] parents = new Solution[2]; do { // -> Create the offSpring solutionSet while (solutionSet.size() < populationSize) { parents[0] = (Solution) selection.execute(archive); parents[1] = (Solution) selection.execute(archive); Solution[] offSpring = (Solution[]) crossover.execute(parents); mutation.execute(offSpring[0]); problem_.evaluate(offSpring[0]); problem_.evaluateConstraints(offSpring[0]); evaluations++; solutionSet.add(offSpring[0]); } for (int i = 0; i < solutionSet.size(); i++) archive.add(solutionSet.get(i)); // Clear the solutionSet solutionSet.clear(); } while (evaluations < maxEvaluations); // Return the solutionSet of non-dominated individual return archive; } // execute